
OpenCL_helpers library

hk@r4in.tk
mns@r4in.tk

September 15, 2020

1 Introduction

The OpenCL_helpers library is designed to simplify the programming of multithreaded ap-
plications usingGPGPU (General-purpose computing on graphics processing units). The library does
not cover all of needs of the programming of applications usingGPGPU, but it hadbeenwritten to sim-
plify themaking of applications usingmultilevel (hierarchical) parallelism on one computer. In other
words, it allows to parallelise the task into threads on amain computer (CPU) and than parallelise the
task inside each GPGPU-device, dividing GPU-threads into squads performing different subtasks.

While designing the library it was assumed that each CPU-thread uses its own separate
GPGPU-device, but it is not prohibited to use the same GPGPU-device in two or more CPU-threads.
Parallelism at the CPU level is provided by POSIX Threads and parallelism at the GPGPU level is pro-
vided by the library.

The library consists of four parts, not all of which are directly related to parallelism andwhich
could be used independently of each other.

Thefirst part isOpenCLprogramsbuild tools (s.2). Build tools allow tobuildOpenCLprograms
from the command line and view the build result without writing and executing another application.

The second part (s.3) is the CPU-functions of the OpenCL_helpers library and syntax which
allows to make header-files common for CPU and GPGPU programs.

The third part (s.4) makes up for the lack of memory management tools in OpenCL C and
provides instruments for GPGPUmemory allocation and deallocation, heap diagnostics and pointer
reinterpretation.

The fourth part is the GPGPU-functions which allow to organize parallelism inside GPGPU,
dividing whole amount of GPGPU-threads into squads engaged in performing their own tasks.

1.1 Build and install

1.1.1 Prerequisites

It’s supposed that you have:

1. A computer with OS Linux installed.

2. An installed and ready to work C compiler.

3. The installed and available standard C language library (libc).

4. An installed OpenCL software of version 1.2 or later from any vendor.

1

1.1.2 Getting the source code of the OpenCL_helpers library

A copy of the source code of the OpenCL_helpers library can be downloaded from the
address https://ggs.void.r4in.tk/hk/OpenCL_helpers/archive/master.tar.gz than un-
packed into a suitable directory.

Besides of that, if VCS Git (https://git-scm.com) is installed, a copy of the source code of
the library could be obtained with the following command:

git clone https://ggs.void.r4in.tk/hk/OpenCL_helpers.git

1.1.3 Build

To build with default settings it’s necessary to navigate to the OpenCL_helpers directory and
run the command

make
It is acceptable to use option -j for multithreaded build. If the make command completed without
errors, the following files would appear in the OpenCL_helpers/build directory:

liboclh.so.I.J oclh_br oclh_cr oclh_lr
and a few *.o subdirectories containing object files. In the name of the first file I is themajor version
of the library and J is the minor version.

Each file could be built separately with commands:
make oclh_library
make oclh_builder
make oclh_compiler
make oclh_linker

If it was necessary, the library could be built for debugging with the command:
make debug

1.1.4 Installation

Installation is performed by the command:
make install

As the result the ~/opt/oclh directory is created, where executable files, the library file and header
files are copied into the bin, lib, include subdirectories respectively. After that it is advisable to add
the~/opt/oclh/bindirectory to thePATH environment variable and the~/opt/oclh/libdirectory
to the LD_LIBRARY_PATH environment variable.

The destination path can be changed with the command:
make PRFX_PATH=destination_path install

1.1.5 Uninstallation

Uninstallation is performed by the command:
make uninstall

or
make PRFX_PATH=destination_path uninstall

if the library had been installed in a non-default directory.

1.1.6 Documentation

The documentation of the OpenCL_helpers library is built separately. To build the doc-
umentation, it’s necessary to have the X ETEX/X ELATEX typesetting system or another TEX/LATEX-
compatible system. The X ETEX system and related packages are provided within the TEX Live distri-

2

https://ggs.void.r4in.tk/hk/OpenCL_helpers/archive/master.tar.gz
https://git-scm.com
https://ggs.void.r4in.tk/hk/OpenCL_helpers.git

bution (https://www.tug.org/texlive/). Using a system other than X ETEX may require changes
in the source code of the documentation.

In addition to the typesetting system itself, it’s necessary to have a number of packages, for
example, xindy for composition of the index. All packages used for preparation of the documentation
are freely available as part of the TEX Live distribution.

Thedocumentationbuild itself is performed in theOpenCL_helpers/documentationdirec-
tory by running build script

./build_script
If no errors occurred during the execution of the current script, the following files would appear in
the OpenCL_helpers/documentation/build directory:

opencl_helpers_documentation-russian.pdf
opencl_helpers_documentation-english.pdf

which contain the documentation in Russian and English languages, respectively.
The build uses fonts of the IBM Plex family, but it is possible to return to the basic Com-

puter Modern family by uncommenting the line
\input{fonts/font_settings-Computer_Modern.tex}

in the preamble of the documentation source code.

1.2 Log file format

The library tools allow maintain a log in log files about events occurring in an application, in
addition, the library itself, if necessary, writes to the log file. Description of logging functions is given
in s.3.2.

The standard log file entry looks like

YYYY-MM-DD hh:mm:ss ws_0xHHHH entry_content

where
YYYY – year written in four decimal digits;
MM – month of the year written in two decimal digits from 01 to 12;
DD – day of the month written in two decimal digits from 01 to 31;
hh – hour of the day written in two decimal digits from 00 to 23;
mm – minute of the hour written in two decimal digits from 00 to 59;
ss – second of the minute written in two decimal digits from 00 to 59;
HHHH – the last two bytes of an address of the working configuration of the GPGPU

device (workset, for details see s.3.1) written in four hexadecimal digits.

entry_content – can be any text which passed to a logging function, but the library itself obeys, if
possible, the next conventions:

1. Information related to OpenCL instances is recorded as instance_type_0xHHHH, where
HHHH – the last two bytes of the instance address, written in four hexadecimal digits.
So, for example, a GPGPU device could be recorded as dev_0x2a78, and a platform as
platform_0xf190. An exhaustive list of OpenCL instances is given in the OpenCL specifica-
tions.

2. As a delimiter of information blocks in the entries and marking the relativity of such blocks,
the symbol «|» is used. So, the entry

2019-06-03 15:42:47 ws_0x9c00 context_0x9f60 | dev_0xf260 | ...

3

https://www.tug.org/texlive/

means that entry describes event related to OpenCL context 0x9f60 using GPGPU device
0xf260.

3. In case of recording information that is an explicitation, an additional space is put before it, for
example:

2019-06-03 15:42:47 ws_0x9c00 context_0x9f60 | Reference count: 1
2019-06-03 15:42:47 ws_0x9c00 context_0x9f60 | Number of devices: 1
2019-06-03 15:42:47 ws_0x9c00 context_0x9f60 | Device ID(s): 0x1acf260
2019-06-03 15:42:47 ws_0x9c00 context_0x9f60 | dev_0xf260 | GPU: 15 units/17...
2019-06-03 15:42:47 ws_0x9c00 context_0x9f60 | dev_0xf260 | Memory: 8116.43...
2019-06-03 15:42:47 ws_0x9c00 context_0x9f60 | dev_0xf260 | Vendor: NVIDIA Corp...
2019-06-03 15:42:47 ws_0x9c00 context_0x9f60 | dev_0xf260 | Model: GeForce GT...
2019-06-03 15:42:47 ws_0x9c00 context_0x9f60 | Context properties:
2019-06-03 15:42:47 ws_0x9c00 context_0x9f60 | Platform: 0xf190
2019-06-03 15:42:47 ws_0x9c00 context_0x9f60 | platform_0xf190 | Profile: FULL_PROFILE
2019-06-03 15:42:47 ws_0x9c00 context_0x9f60 | platform_0xf190 | Version: OpenCL 1...
2019-06-03 15:42:47 ws_0x9c00 context_0x9f60 | platform_0xf190 | Name: NVIDIA CUDA
2019-06-03 15:42:47 ws_0x9c00 context_0x9f60 | platform_0xf190 | Vendor: NVIDIA Corp...
2019-06-03 15:42:47 ws_0x9c00 context_0x9f60 | platform_0xf190 | Extensions: cl_khr...
2019-06-03 15:42:47 ws_0x9c00 context_0x9f60 | Is user responsible for sync: Undefined (presumable No)

4. If an error occurred during the execution of the library function, there would be added to the
log an entry starting with oclerr: and containing information about all function calls from
the library to the OpenCL API. So, the entry

YYYY-MM-DD hh:mm:ss ws_0xHHHH oclerr:
_ghf_getBuildStatus/clGetProgramBuildInfo/CL_PROGRAM_BUILD_STATUS
returned error -3 - CL_COMPILER_NOT_AVAILABLE

means that the _ghf_getBuildStatus function called the OpenCL API function
clGetProgramBuildInfo with the argument CL_PROGRAM_BUILD_STATUS and received
as a response the -3 error code, which stands for CL_COMPILER_NOT_AVAILABLE.

Given that OpenCL instance addresses are unique for one application run, it is highly likely
that the combination of the name of the instance and the last two bytes of its address is also unique.
Therefore, the use of these conventions allows, with substring filtering, obtain the necessary infor-
mation from the log file for a particular OpenCL instance.

In addition to the standard log entry there is also the header entry, which looks like

YYYY-MM-DD hh:mm:ss ws_0xHHHH __________
YYYY-MM-DD hh:mm:ss ws_0xHHHH Title_text
YYYY-MM-DD hh:mm:ss ws_0xHHHH ~~~~~~~~~~

and the delimiter entry, which looks like

YYYY-MM-DD hh:mm:ss ws_0xHHHH __
YYYY-MM-DD hh:mm:ss ws_0xHHHH ~~

4

1.3 Naming conventions

The following substitutions were used to describe the conventions:

* – any string of characters;
Action – semanticnameof anaction, for example, «Sync» for synchronizationor «Fill» forfilling;
Tname – type name, semantic name of an data type, it does not obligingly corresponds to the

technical name of the structure;
BTA – base type acronym, acronym for a basic data type, so the following acronymswere used

in the library already:
i8 (signed char), u8 (unsigned char),
i16 (signed short), u16 (unsigned short),
i32 (signed int), u32 (unsigned int),
i64 (signed long int), u64 (unsigned long int),
f32 (float), f64 (double).

The following naming conventions were used in the library:
__*

the library instances for internal use begin with two underscores. While regular use of the
library, using of such instances is not assumed.

Macrodefinitions
GHM*

gpgpu hostmacro, preprocessor macrodefinition for the CPU program compiler.
GDM*

gpgpu devicemacro, preprocessor macrodefinition for the OpenCL program compiler.
GHDM*

gpgpu host-devicemacro, preprocessormacrodefinition common for the CPU program com-
piler and the OpenCL program compiler.

Data types
GHT*

gpgpu host type, data type for CPU programs.
GDT*

gpgpu device type, data type for OpenCL programs.
GHDT*

gpgpu host-device type, data type common for CPU and OpenCL programs.

Enumerations
GHE*

gpgpu host enumeration, enumeration for CPU programs.
GDE*

gpgpu device enumeration, enumeration for OpenCL programs.
GHDE*

gpgpu host-device enumeration, enumeration common for CPU and OpenCL programs.

Functions
ghf*()

gpgpu host function, library function available for CPU programs only.
gdf*()

gpgpu device function, library function available for OpenCL programs only.

5

ghdf*()
gpgpu host-device function, library function common for CPU and OpenCL programs.

_wdc()
with data cleaner, special type of function. If error occurred while the execution of such func-
tion, then callback function would be called which deallocates memory and sets to zeroes
members of structure from the user data member of the workset, for details see s.3.1.1.

*_declTname()
*_declTname_BTA()

declarator, function returns a structure withmembers initialized to default values. The func-
tion does not allocate memory and Tname’s members-pointers are set to NULL. Assignment
the value returned such a function to an existing structuremay lead to amemory leak, there-
fore *_decl*() functions are being called for structure declaration only.

*_genrTname()
*_genrTname_BTA()

generator, the function allocatesmemory for allmembers-pointer of the Tname structure, the
pointer to which is obtained from the arguments. Then the function assign values in accor-
dancewith its arguments. Such a function is analogue of the constructor. If an error occurred,
the functionwould return int value other than zero and completely deallocatememory of the
Tname structure, including themembers-structures. Tname is a semantic name, that does not
obligingly corresponds to the technical name of the structure.

Important warning: If a pointer to an existing structure was passed as an argument of the
_genr() function, the structure would be correctly recreated with the deletion of all
previous data and the deallocation of the corresponding memory, including the members-
structures.

*_isTname_Valid()
*_isTname_BTA_Valid()

the function performsminimal integrity check of the structure data and returns an int value.
If the structure data is integral, the *_is*_Valid() function returns 1, otherwise 0 is re-
turned.

*ActionTname()
*ActionTname_BTA()

the function performs Action over a Tname type. If an error occurred, an int value other
than zero would be returned and the memory of the structure would be completely deallo-
cated, including themembers-structures. Tname is a semantic name, that does not obligingly
corresponds to the technical name of the structure.

*_wipeTname()
*_wipeTname_BTA()

the functioncompletelydeallocates thememoryoccupiedby themembersof theTname struc-
ture, including the members-structures, then assigns default values to all of the structure
members, and NULL to the members-pointers. After applying the *_wipe*() function, the
state of the Tname structure is fully equivalent to the value returned by the *_decl*() func-
tion and thememory occupied by the structure can be deallocated or the *_genr*() function
can be applied again. Tname is a semantic name, that does not obligingly corresponds to the
technical name of the structure.

6

*_getTname()
the indirect data access function, if is called returns the Tname value obtained from the func-
tion arguments. Tname is a semantic name, that does not obligingly corresponds to the tech-
nical name of the structure.

Files
*.clc

file with the source code of the OpenCL program in OpenCL C language.
*.clh

header file with the source code of the OpenCL program in OpenCL C language.
*.clo

compiled OpenCL object. It only makes sense for OpenCL devices of the same architecture.
*.clso

linked OpenCL library (shared object/library). It only makes sense for OpenCL devices of the
same architecture.

*.clexe
linked OpenCL executable. It only makes sense for OpenCL devices of the same architecture.

*.clout
an OpenCL file, content of which could not be identified using the library.

*.log
log file.

2 OpenCL programs build tools

The library includes three executable files:

• oclh_cr – compiles an OpenCL program into an OpenCL object;

• oclh_lr – links OpenCL objects;

• oclh_br – completly builds an OpenCL program.

During the execution of these programs, a detailed diagnostic log is being maintained in the
oclh_*r.log file (according to the name of the tool), where excessive information is stored on all
available GPGPU devices, used platforms, and contexts created for build. In fact, you can run, for ex-
ample, oclh_сrwith any input file, evenwith itself as ./oclh_сr oclh_сr. The input file, of course,
will not be built into an OpenCL object, but the oclh_сr.log log file will contain complete informa-
tion on GPGPU devices found in the system. The log file format is human-readable, adapted to search
for substrings using the grep command and analogues. The log file format is described in s.1.2.

Let us take a look at the use cases for each of these tools.

2.1 Compilation

Isolated compilation is performed by oclh_cr.

2.1.1 Synopsis

oclh_cr [--dev-idxs=#,#,... | --dev-name=mask]
[--verbatim-output-name] [-o outfile]
[COMPILER_OPTIONS] infile...

7

2.1.2 Description

When oclh_сr is called, source code is compiled fromfiles infile... for all GPGPUdevices
available on the system. If the --dev-idxs=#,#,... option was specified, then compilation would
be performed only for the GPGPU devices with the #,#,... indices (for details, see s.2.1.3). If the
--dev-name=maskwas specified, then compilation would be performed only for the GPGPU devices
whose model matches the mask (for details, see s.2.1.3).

During the execution of the oclh_сr tool, a detailed diagnostic log is being maintained in
the oclh_cr.log file, where excessive information is stored on all available GPGPU devices, used
platforms, and contexts created for compilation. In fact, you can run oclh_сr with any input file,
evenwith itself as./oclh_сr oclh_сr. The input file, of course, will not be compiled into anOpenCL
object, but the oclh_сr.log log file will contain complete information on GPGPU devices found in
the system. The log file format is human-readable, adapted to search for substrings using the grep
command and analogues. The log file format is described in s.1.2.

Considering that compilation may be performed for several devices of dif-
ferent vendors, the program compilation log is maintained in different log files
outfile-GPGPU_device_model-trans.log.

The result of the compiler’s work is an unlinked binary object saved in the
outfile-GPGPU_device_model.clo file. If the option --verbatim-output-name was speci-
fied, then the result would be saved in the outfile file. Sometimes a situation arises when the
vendor’s OpenCL library generates several binary objects as a result, in which case all binary objects
will be saved, but the postfix .N will be added to the file names, where N is a decimal number
denoting the sequence number (starting from zero) of the binary object generated by the compiler of
the vendor of the GPGPU device.

If the option -o is not specified, then the outfile in the file name will be replaced by a sub-
stringof the formprogram_0xHHHH. In case if theGPGPUdevicemodel isnot identifiedby theOpenCL
means, then the GPGPU_device_model will be replaced by a substring of the form dev_0xHHHH. In
the replacements mentioned above, HHHH is hexadecimal representation of the last two bytes of the
program and the GPGPU device addresses, respectively. Given that addresses of the program and
GPGPU device are unique for one application run, it is highly likely that the combination of the name
of the instance and the last two bytes of its address is also unique, so can be used as a substring to
search related entries in the main log file oclh_сr.log.

The main log file name oclh_сr.log and the file saving path can be changed when building
the OpenCL_helpers library in the header file

src/inc/oclh_settings.h
That name and the path to save logs and compilation results are defined in macrodefinitions

#define _GHM_LOG_PATH ”.”
#define _GHM_OCLH_COMPILER_LOG_FILENAME ”oclh_cr.log”

The compiler always receives the -D_OCLH_OCL_COMPILER_ argument. It is hardcoded in the
library code and introduced for ability to use header files both in programs for GPGPU programs and
CPU without changing them. For details, see s.3.3.

2.1.3 Arguments

--dev-idxs=#,#,...
the #,#,...numbers specifiedwithout spaces separated by commas after the --dev-idxs=
optionare sequencenumbers (indices) ofGPGPUdevices in the system forwhich the compila-
tion will be performed. Indices start with zero. You can find out the indice of a specific device
from the log file, in the first section of which in the device description the first line has the
form

YYYY-MM-DD hh:mm:ss ws_0xHHHH dev_0xHHHH | Device index: N

8

where N is the indice of this device.
--dev-name=mask

themask string specifiedafter the--dev-name=option is awildcard that defineswhichdevice
models present in the system the compilation will be performed for. Wildcard characters are:

? –matches any single character;
* –matches any number of any characters including none.

In theabsenceofwildcardcharacters themask is considered tobe theexactnameof thedevice
model. You can find out the model of a specific device from the log file, in the first section of
which in the device description there is the line of the form

YYYY-MM-DD hh:mm:ss ws_0xHHHH dev_0xHHHH | Device name: model
where model is the string that is checked for matching with the mask.

--verbatim-output-name
the given option instructs the compiler not to add the GPGPU device model and an extension
to the output file name, but to use it exactly as described. But, if the result of the compiler’s
work was more than one binary object, then the .N postfix would be added to the file name,
where N is decimal number denoting the sequence number (starting from zero) of the binary
object formed by the compiler of the GPGPU device vendor.

-o outfile
the outfile string is the name of the output file. If the --verbatim-output-name op-
tion was not specified, then the outfile string would be used as the prefix of the
outfile-GPGPU_device_model.clo file name, which contains the binary object generated
as the result of compilation. If the --verbatim-output-name option was specified, then the
outfile stringwould be used «as is», unless several binary objectswas generated as result of
compilation – in this case, all binary objects would be saved with the outfile.N file names,
where N is the sequence number of the binary object starting from zero. Additionally, the
outfile string is used as the prefix in the name of the compilation log file.

Important warning: Space characters at the beginning and the end of the outfile string are
deleted. Space characters inside of the outfile string are replaced with underscores.

COMPILER_OPTIONS
compiler arguments. In unchanged form andwith the preservation of the sequence passed to
the compiler of the vendor. The compiler arguments themselves are described in the OpenCL
specifications, in addition, the vendor’s compiler can support additional arguments not fixed
in the OpenCL specifications.

infile...
the list separated by spaces with the names of the files containing the source code of the
OpenCL C or OpenCL C++ program. The file name cannot begin with a «-» character.

2.2 Linking

Isolated linking is performed by oclh_lr.

2.2.1 Synopsis

oclh_lr [--dev-idxs=#,#,... | --dev-name=mask]
[--verbatim-output-name] [-o outfile]
[LINKER_OPTIONS] infile...

9

2.2.2 Description

When oclh_lr is called, OpenCL objects are linked from files infile... for all GPGPU de-
vices available on the system. It should be understood that only objects compiled for one GPGPU ar-
chitecture can be linked, and GPGPU architectures can differ even from one vendor’s devices. An
attempt to link object compiled for an architecture different from the device architecture will result
in error -42 OpenCL API:

oclerr: clCreateProgramWithBinary returned error -42 - CL_INVALID_BINARY
According to mentioned above, it is recommended to run the linker for only one device or device
model using option --dev-idxs=#,#,... or --dev-name=mask. If the --dev-idxs=#,#,... op-
tion was specified, then linking would be performed only for the GPGPU devices with the #,#,...
indices (for details, see s.2.2.3). If the --dev-name=mask was specified, then linking would be per-
formed only for the GPGPU devices whose model matches the mask (for details, see s.2.2.3).

During the execution of the oclh_lr tool, a detailed diagnostic log is being maintained in
the oclh_lr.log file, where excessive information is stored on all available GPGPU devices, used
platforms, and contexts created for linking. The log file format is described in s.1.2.

The linking log is maintained in log files outfile-GPGPU_device_model-link.log.
The result of the linker’swork is an executable binary object or a sharedbinary object (library)

saved in the outfile-GPGPU_device_model.clexe or outfile-GPGPU_device_model.clso file,
respectively. If the option --verbatim-output-name was specified, then the result would be saved
in the outfilefile. Sometimes a situation ariseswhen the vendor’s OpenCL library generates several
binaryobjects as a result, inwhichcaseall binaryobjectswill be saved, but thepostfix.Nwill be added
to the file names, where N is a decimal number denoting the sequence number (starting from zero) of
the binary object generated by the linker of the vendor of the GPGPU device.

If the option -o is not specified, then the outfile in the file name will be replaced by a sub-
stringof the formprogram_0xHHHH. In case if theGPGPUdevicemodel isnot identifiedby theOpenCL
means, then the GPGPU_device_model will be replaced by a substring of the form dev_0xHHHH. In
the replacements mentioned above, HHHH is hexadecimal representation of the last two bytes of the
program and the GPGPU device addresses, respectively. Given that addresses of the program and
GPGPU device are unique for one application run, it is highly likely that the combination of the name
of the instance and the last two bytes of its address is also unique, so can be used as a substring to
search related entries in the main log file oclh_lr.log.

The main log file name oclh_lr.log and the file saving path can be changed when building
the OpenCL_helpers library in the header file

src/inc/oclh_settings.h
That name and the path to save logs and linking results are defined in macrodefinitions

#define _GHM_LOG_PATH ”.”
#define _GHM_OCLH_LINKER_LOG_FILENAME ”oclh_lr.log”

2.2.3 Arguments

--dev-idxs=#,#,...
the #,#,...numbers specifiedwithout spaces separated by commas after the --dev-idxs=
option are sequence numbers (indices) of GPGPU devices in the system for which the linking
will be performed. Indices start with zero. You can find out the indice of a specific device from
the log file, in the first section of which in the device description the first line has the form

YYYY-MM-DD hh:mm:ss ws_0xHHHH dev_0xHHHH | Device index: N,
where N is the indice of this device.

--dev-name=mask
themask string specifiedafter the--dev-name=option is awildcard that defineswhichdevice
models present in the system the linking will be performed for. Wildcard characters are:

10

? –matches any single character;
* –matches any number of any characters including none.

In theabsenceofwildcardcharacters themask is considered tobe theexactnameof thedevice
model. You can find out the model of a specific device from the log file, in the first section of
which in the device description there is the line of the form

YYYY-MM-DD hh:mm:ss ws_0xHHHH dev_0xHHHH | Device name: model
where model is the string that is checked for matching with the mask.

--verbatim-output-name
the given option instructs the linker not to add the GPGPU device model and an extension to
the output file name, but to use it exactly as described. But, if the result of the linker’s work
was more than one binary object, then the .N postfix would be added to the file name, where
N is decimal number denoting the sequence number (starting from zero) of the binary object
formed by the linker of the GPGPU device vendor.

-o outfile
the outfile string is the name of the output file. If the --verbatim-output-name
option was not specified, then the outfile string would be used as the prefix of
the outfile-GPGPU_device_model.clexe or outfile-GPGPU_device_model.clso file
name, which contains the binary object generated as the result of linking. If the
--verbatim-output-name optionwas specified, then the outfile string would be used «as
is», unless several binary objects was generated as result of linking – in this case, all binary
objects would be saved with the outfile.N file names, where N is the sequence number of
the binary object starting from zero. Additionally, the outfile string is used as the prefix in
the name of the linking log file.

Important warning: Space characters at the beginning and the end of the outfile string are
deleted. Space characters inside of the outfile string are replaced with underscores.

LINKER_OPTIONS
linker arguments. In unchanged form and with the preservation of the sequence passed to
the linker of the vendor. The linker arguments themselves are described in the OpenCL spec-
ifications, in addition, the vendor’s linker can support additional arguments not fixed in the
OpenCL specifications.

infile...
the list separated by spaces with the names of the files containing the OpenCL compiled ob-
jects. The file name cannot begin with a «-» character.

2.3 Complete build routine

Complete build routine is performed by oclh_br.

2.3.1 Synopsis

oclh_br [--dev-idxs=#,#,... | --dev-name=mask]
[--verbatim-output-name] [-o outfile]
[COMPILER_OPTIONS] [LINKER_OPTIONS] infile...

2.3.2 Description

When oclh_br is called, a complete build routine (compilation and linking) of the source
code from from files infile... is performed for all GPGPU devices available on the system. If the
--dev-idxs=#,#,... option was specified, then build would be performed only for the GPGPU de-
vices with the #,#,... indices (for details, see s.2.3.3). If the --dev-name=mask was specified, then

11

buildwould be performed only for theGPGPUdeviceswhosemodelmatches the mask (for details, see
s.2.3.3).

Important warning: At first glance, using the builder seems preferable than separate compi-
lation and linking, as it allows to get executable files from the source code for all OpenCL
devices at once. However, there are nuances that are related to the fact that the work of the
builder is determined by the library of the GPGPU device vendor. So, during testing, the fol-
lowing problems were identified:

(1) not all builders support the generation of libraries, most of them create an exe-
cutable file, so to create exactly the library, it is necessary to use the linker with the
-create-library option (according to the current OpenCL specification);
(2) for some unclear reason, some builders ignore the declaration of a function and
interpret only its definition, what leads to the necessity of specifying files with the
definition of the function in the infile... list of files with source codes strictly be-
fore the first use of the function, despite the declaration of the function in the head-
ers.

Perhaps there are or will appear other pitfalls in using vendors’ builders, so it is recom-
mended to use separate compilation and linking.

During the execution of the oclh_br tool, a detailed diagnostic log is being maintained in
the oclh_br.log file, where excessive information is stored on all available GPGPU devices, used
platforms, and contexts created for build. The log file format is described in s.1.2.

Considering thatbuildmaybeperformed for several devicesofdifferent vendors, theprogram
build log is maintained in different log files outfile-GPGPU_device_model-build.log.

The result of the builder’s work is an executable binary object saved in the
outfile-GPGPU_device_model.clexe file. If the option --verbatim-output-name was spec-
ified, then the result would be saved in the outfile file. Sometimes a situation arises when the
vendor’s OpenCL library generates several binary objects as a result, in which case all binary objects
will be saved, but the postfix .Nwill be added to the file names, where N is a decimal number denoting
the sequence number (starting from zero) of the binary object generated by the builder of the vendor
of the GPGPU device. An introduction to the file name of this number is due to the fact that, when
implementing OpenCL, vendors are free to choose the output format of the built program. So, for ex-
ample, the implementation from Intel will create and output a binary object, which is an ELF-file; and
the NVidia’s OpenCL implementation will output a human-readable text block of ptx-code (it’s kind
of Assembler variation for GPGPU, also named IR/IL – Intermediate Representation/Intermediate
Language). Moreover, sometimes several binary objects with different contents can be generated.
Before saving, what exactly is contained in the binary object is not possible by OpenCL means,
therefore binary objects are simply numbered by N in the order in which they are stored in memory
by the OpenCL implementation.

If the option -o is not specified, then the outfile in the file name will be replaced by a sub-
stringof the formprogram_0xHHHH. In case if theGPGPUdevicemodel isnot identifiedby theOpenCL
means, then the GPGPU_device_model will be replaced by a substring of the form dev_0xHHHH. In
the replacements mentioned above, HHHH is hexadecimal representation of the last two bytes of the
program and the GPGPU device addresses, respectively. Given that addresses of the program and
GPGPU device are unique for one application run, it is highly likely that the combination of the name
of the instance and the last two bytes of its address is also unique, so can be used as a substring to
search related entries in the main log file oclh_br.log.

The main log file name oclh_br.log and the file saving path can be changed when building

12

the OpenCL_helpers library in the header file
src/inc/oclh_settings.h

That name and the path to save logs and build results are defined in macrodefinitions
#define _GHM_LOG_PATH ”.”
#define _GHM_OCLH_BUILDER_LOG_FILENAME ”oclh_br.log”

The builder always receives the -D_OCLH_OCL_COMPILER_ argument. It is hardcoded in the
library code and introduced for ability to use header files both in programs for GPGPU programs and
CPU without changing them. For details, see s.3.3.

2.3.3 Arguments

--dev-idxs=#,#,...
the #,#,...numbers specifiedwithout spaces separated by commas after the --dev-idxs=
option are sequence numbers (indices) of GPGPU devices in the system for which the build
will be performed. Indices start with zero. You can find out the indice of a specific device from
the log file, in the first section of which in the device description the first line has the form

YYYY-MM-DD hh:mm:ss ws_0xHHHH dev_0xHHHH | Device index: N,
where N – is the indice of this device.

--dev-name=mask
themask string specifiedafter the--dev-name=option is awildcard that defineswhichdevice
models present in the system the build will be performed for. Wildcard characters are:

? –matches any single character;
* –matches any number of any characters including none.

In theabsenceofwildcardcharacters themask is considered tobe theexactnameof thedevice
model. You can find out the model of a specific device from the log file, in the first section of
which in the device description there is the line of the form

YYYY-MM-DD hh:mm:ss ws_0xHHHH dev_0xHHHH | Device name: model
where model is the string that is checked for matching with the mask.

--verbatim-output-name
the given option instructs the builder not to add the GPGPU devicemodel and an extension to
the output file name, but to use it exactly as described. But, if the result of the builder’s work
was more than one binary object, then the .N postfix would be added to the file name, where
N is decimal number denoting the sequence number (starting from zero) of the binary object
formed by the builder of the GPGPU device vendor.

-o outfile
the outfile string is the name of the output file. If the --verbatim-output-name op-
tion was not specified, then the outfile string would be used as the prefix of the
outfile-GPGPU_device_model.clexe file name, which contains the binary object gener-
ated as the result of build. If the --verbatim-output-name option was specified, then the
outfile string would be used «as is», unless several binary objects was generated as result
of build – in this case, all binary objects would be savedwith the outfile.Nfile names, where
N is the sequence number of the binary object starting from zero. Additionally, the outfile
string is used as the prefix in the name of the build log file.

Important warning: Space characters at the beginning and the end of the outfile string are
deleted. Space characters inside of the outfile string are replaced with underscores.

COMPILER_OPTIONS
compiler arguments. In unchanged form andwith the preservation of the sequence passed to
the builder of the vendor. The compiler arguments themselves are described in the OpenCL
specifications, in addition, the vendor’s builder can support additional arguments not fixed
in the OpenCL specifications.

13

LINKER_OPTIONS
linker arguments. In unchanged formandwith the preservation of the sequence passed to the
builder of the vendor. The linker arguments themselves are described in the OpenCL speci-
fications, in addition, the vendor’s builder can support additional arguments not fixed in the
OpenCL specifications.

infile...
the list separated by spaces with the names of the files containing the source code of the
OpenCL C or OpenCL C++ program. The file name cannot begin with a «-» character.

3 Using the OpenCL_helpers library. Structures, functions and
headers

Stub. The section will be completed after sufficient testing of functionality.

3.1 Structures

Stub. The section will be completed after sufficient testing of functionality.

3.1.1 Main structure of the working configuration

Stub. The section will be completed after sufficient testing of functionality.

3.2 Logging functions

Stub. The section will be completed after sufficient testing of functionality.

3.3 Common header files for CPU and GPGPU code

Stub. The section will be completed after sufficient testing of functionality.

4 Memory management and pointer reinterpretation in OpenCL C
programs

Stub. The section will be completed after sufficient testing of functionality.

5 Parallelism inside GPU

Stub. The section will be completed after sufficient testing of functionality.

14

Index

L
log file format 3

N
naming conventions 5

O
oclh_br 11

oclh_cr 7
oclh_lr 9
OpenCL builder 11
OpenCL compiler 7
OpenCL linker 9

Contents

1 Introduction 1
1.1 Build and install . 1

1.1.1 Prerequisites . 1
1.1.2 Getting the source code of the OpenCL_helpers library 2
1.1.3 Build . 2
1.1.4 Installation . 2
1.1.5 Uninstallation . 2
1.1.6 Documentation . 2

1.2 Log file format . 3
1.3 Naming conventions . 5

2 OpenCL programs build tools 7
2.1 Compilation . 7

2.1.1 Synopsis . 7
2.1.2 Description . 8
2.1.3 Arguments . 8

2.2 Linking . 9
2.2.1 Synopsis . 9
2.2.2 Description . 10
2.2.3 Arguments . 10

2.3 Complete build routine . 11
2.3.1 Synopsis . 11
2.3.2 Description . 11
2.3.3 Arguments . 13

3 Using the OpenCL_helpers library. Structures, functions and headers 14
3.1 Structures . 14

3.1.1 Main structure of the working configuration . 14
3.2 Logging functions . 14
3.3 Common header files for CPU and GPGPU code . 14

4 Memorymanagement and pointer reinterpretation in OpenCL C programs 14

5 Parallelism inside GPU 14

Index 15

15

	Introduction
	Build and install
	Prerequisites
	Getting the source code of the OpenCL_helpers library
	Build
	Installation
	Uninstallation
	Documentation

	Log file format
	Naming conventions

	OpenCL programs build tools
	Compilation
	Synopsis
	Description
	Arguments

	Linking
	Synopsis
	Description
	Arguments

	Complete build routine
	Synopsis
	Description
	Arguments

	Using the OpenCL_helpers library. Structures, functions and headers
	Structures
	Main structure of the working configuration

	Logging functions
	Common header files for CPU and GPGPU code

	Memory management and pointer reinterpretation in OpenCL C programs
	Parallelism inside GPU
	Index

