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1. Введение
Проблема восстановления координат точки в пространстве в целом

проблемой не является. Формулировка задачи выглядит следующим обра-
зом: в гладкомэвклидовомпространствеℝ𝑛 существует точка𝐱 = {𝑥𝑖}

𝑛−1
𝑖=0 , ко-

ординаты которой неизвестны, но известны координаты 𝑛 + 1 других то-
чек 𝗖 = {𝐜𝑗}

𝑛

𝑗=0
, не лежащих в одной гиперплоскости, а также расстояния

𝑅 = {𝑟𝑗}
𝑛

𝑗=0
от них до точки 𝐱. Очевидно, что восстановление координат точ-

ки 𝐱 осуществляется решением системы уравнений:

⎧{{

⎨{{
⎩

𝑟20 =
𝑛−1
∑
𝑘=0

(𝑥𝑘 − 𝑐0,𝑘)
2

𝑟21 =
𝑛−1
∑
𝑘=0

(𝑥𝑘 − 𝑐1,𝑘)
2

⋯
𝑟2𝑛 =

𝑛−1
∑
𝑘=0

(𝑥𝑘 − 𝑐𝑛,𝑘)
2

(1)

Решение такой системыпри 𝑛 = 2 не представляет проблемы.При 𝑛 = 3 оно
уже сложнее. При дальнейшем увеличении 𝑛 сложность решения такой си-
стемы уравнений растёт очень быстро1. Учитывая, что в настоящее время
размерность может достигать весьма больших значений от сотен и более,

1Точная оценка вычислительной сложности решения таких систем уравнений в зависимости от 𝑛не при-
водится, так как зависит от конкретного алгоритма.
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а кроме того может определяться самой структурой данных и меняться в
ходе их обработки, представляется целесообразным выработать общий ал-
горитм восстановления точки, с приемлемым (и желательно контролируе-
мым) временем выполнения для больших 𝑛.

Ситуация осложняется тем, что в прикладных задачах точность из-
мерения расстояния может быть разной. Так, например, четыре радиопри-
ёмника, оценивая расстояние до источника по силе сигнала, могут давать
значения радиусов, которые не имеют единой точки пересечения, в резуль-
тате чего решение такой системы уравнений будет комплексным, а следова-
тельно неподходящим для практического использования. В подобных слу-
чаях необходимо не точное решение системы уравнений (1), а некое, же-
лательно наилучшее, приближение. Одна из таких ситуаций приведена на
рис.1. Представляется справедливым, что искомая точка вероятнее всего
принадлежит области 𝑎, ограниченной 1-сферами с центрами в 𝐜𝑖 и ради-
усами 𝑟𝑖 соответственно. Данная гипотеза основана на том, что для любой
точки внутри области 𝑎 сумма расстояний до поверхностей сфер меньше,
чем вне области 𝑎. В идеальном случае, еслирадиусы сфер абсолютно точны,
то расстояния от искомой точки до поверхностей сфер равны 0 в соответ-
ствии со смыслом системы уравнений (1). Уточнения и раскрытие данно-
го утверждения приведены ниже с рассмотрением случаев, когда область 𝑎
может быть неограниченной, включая случай, когда ни одна пара сфер не
имеет общих точек.
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Рис. 1: Ситуация при 𝑛 = 2,
𝐜0 = {−0.976, 0.401},
𝐜1 = {−0.251, −0.506},
𝐜2 = {0.368, 0.327},
𝑅 = {0.98, 0.653, 0.816}.

Также нельзя не отметить, что
в прикладных задачах часто есть
возможность получить данные не
с 𝑛 + 1 датчиков, дающих неточные
значения, а с большего их (датчи-
ков) количества. С одной стороны
может показаться, что решение си-
стемы (1) при этом усложнится и
это так, но если отталкиваться от
иных подходов, то в прикладной
сфере дополнительная информация
может (и должна) улучшать прибли-
жение искомой точки, что будет по-
казано в разделе 3.4.2.

Здесь и далее иллюстрации
для наглядности приводятся для
случаев 𝑛 = 2, однако, подразумева-
ется, что всеизложенное справедли-
во для любых 𝑛 ∈ ℕ и, соответствен-
но, (𝑛 − 1)-сфер.

Таким образом, целью данного документа является описание алго-
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ритма, который получает в качестве аргументов:
1. Размерность пространства – 𝑛 ∈ ℕ;

2. Координаты 𝑚 точек (𝑚 ∈ ℕ и 𝑚 > 𝑛)2 в данном пространстве –
𝗖 = {𝐜𝑖 ∈ ℝ𝑛}𝑚−1𝑖=0 ;

3. Недостоверные расстояния от точек 𝗖 до искомой точки –
𝑅 = {𝑟𝑖 ∈ ℝ}

𝑚−1
𝑖=0 .

Результат работы алгоритма это точка 𝐱 = {𝑥𝑖}
𝑛−1
𝑖=0 , являющаяся наилучшим

приближением искомой точки. Это расплывчатое определение дано в свя-
зи с тем, что при описании алгоритма умышленно не будет использовать-
ся «настоящая» искомая точка, так как в практических задачах, для ре-
шения которых вырабатывается алгоритм, искомая точка всегда неизвест-
на даже в случае полностью контролируемых условий оценки алгоритма.
В разделе 3.4 при оценке прототипа будет использована «настоящая» ис-
комая точка для вычисления статистики по ошибке приближения, но при
этом необходимо понимать, что хороший алгоритм должен демонстриро-
вать прямуюкорреляциюкачества своейработыи точности датчиков выда-
ющих расстояния 𝑅, а в таком случае оценка расстояния между алгоритми-
чески вычисленной и искомой точкой будет не оценкой алгоритма, а оцен-
кой точности датчиков, причём косвенной. В общем же случае лучше гово-
рить, что алгоритм рассчитывает координаты точки, где наиболее вероят-
но нахождение искомой точки; либо полученное приближение достаточно
точно для принятия решения и дальнейших действий. Грубо говоря, если
поставить целью «уничтожение» искомой точки бомбой, которая при де-
тонации сохраняет разрушающее воздействие в радиусе 100 метров от эпи-
центра взрыва, то достаточно того, чтобы алгоритмически рассчитанная
точка была менее чем в ста метрах от искомой.

2. Алгоритм

2.1. Предварительные утверждения
В данном разделе приведены самоочевидные или доказуемые утвер-

ждения, постулаты, леммы, отношение которых к описываемому алгорит-
му на данном этапе изложенияможет быть неясно.Поэтому выможете при
первом чтении пропустить этот раздел и перейти к общему описанию ал-
горитма (разд. 2.2) и в ходе его чтения по ссылкам вернуться в этот раздел
при необходимости.

2Ограничение 𝑚 > 𝑛 очевидно и продиктовано тем, что при 𝑚 < 𝑛 + 1 существует сфера (множество то-
чек) такая, что искомая точка равновероятно находится в любой точке принадлежащей поверхности такой
сферы.
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2.1.1. Кратчайшеерасстояниеот точкидоповерхности сферыв гладком
эвклидовом пространстве

Определим функцию 𝛿 (𝐚, 𝐛) как эвклидово расстояние:

𝛿 (𝐚, 𝐛) ∶⇔ 2√
𝑛−1
∑
𝑖=0

(𝑎𝑖 − 𝑏𝑖)
2 (2)

Тогда минимальное расстояние 𝜇 от точки 𝐚 до поверхности (𝑛 − 1)-сферы с
центром в 𝐜 и радиусом 𝑟:

𝗦 ∶⇔ {𝐬 ∈ ℝ𝑛| 𝛿 (𝐜, 𝐬) = 𝑟}
𝐬𝜇 = argmin

𝐬∈𝗦
𝛿 (𝐚, 𝐬)

𝜇 = 𝛿 (𝐚, 𝐬𝜇)
𝜇 (𝐚, 𝐜, 𝑟) ∶⇔ |𝛿 (𝐚, 𝐜) − 𝑟| (3)

Формула (3) это удобное следствие из определения сферы, позволяющее ал-
горитмически эффективно рассчитывать 𝜇 без вычисления точки 𝐬𝜇. Также
необходимо помнить, что при смене метрики на иную формула (3) может
перестать работать. Особенно надо быть осторожным при смене метрики
на непринадлежащую метрикам Минковского или даже на некоммутиру-
ющую функцию расстояния, и учитывать, что при смене функции рассто-
яния должна меняться не только формула, но и определение сферы. Это
связано с тем, что формула (3) в данном случае следует из определения сфе-
ры через метрику, или, иными словами, в данном случае формула (3) спра-
ведлива потому, что 𝛿 и 𝑟 косвенно определены одна через другую (circulus
vitiosus!).

В худших случаях смена функции расстояния может привести к то-
му, что 𝑛 + 1 сфер могут иметь более одной общей точки и/или что точный
способ нахождения кратчайшего расстояния от точки до сферыможет быть
неизвестен, сложен для машинного вычисления, или реализовано только
приблизительное его вычисление через поиск argmin𝐬 𝛿 (𝐚, 𝐬).

В дальнейшем в данном документе используется и подразумевается
эвклидова метрика.
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2.1.2. Уравнение координат пересечения (𝑛 − 1)-сферы с прямой, прохо-
дящей через центр (𝑛 − 1)-сферы
Для нахождения координат точки пересечения (𝑛 − 1)-сферы в про-

странстве ℝ𝑛 с прямой необходимо решить систему уравнений:

⎧{

⎨{
⎩

𝑥0−𝑝0
𝑣0 = 𝑥1−𝑝1

𝑣1𝑥0−𝑝0
𝑣0 = 𝑥2−𝑝2

𝑣2
⋯

𝑥0−𝑝0
𝑣0 = 𝑥𝑛−1−𝑝𝑛−1

𝑣𝑛−1

𝑟2 =
𝑛−1
∑
𝑖=0

(𝑥𝑖 − 𝑐𝑖)
2

, где
𝐱 = {𝑥𝑖}

𝑛−1
𝑖=0 —точка пересечения;

𝐩 = {𝑝𝑖}
𝑛−1
𝑖=0 —точка принадлежащая прямой;

𝑣⃗ = {𝑣𝑖}
𝑛−1
𝑖=0 —вектор коллинеарный прямой;

𝐜 = {𝑐𝑖}
𝑛−1
𝑖=0 —центр сферы;

𝑟 —радиус сферы;
𝑛 —размерность пространства.

(4)
Полагаю излишним приводить решение данной системы уравнений,
но необходимо отметить, что в период первоначального составления
документа математические программы актуальных версий (Wolfram
Mathematica, Mathcad Prime) при 𝑛 > 3 дают неверные, но приближенные
решения системы уравнений (4). Так в ходе работы над алгоритмом было
проведено ручное решение и декомпозиция системы (4) вплоть до 𝑛 = 5,
что и обнаружило неточность машинных решений системы. Поэтому в
случае необходимости модификации алгоритма и решения подобных си-
стем уравнений осторожно относитесь к результатам машинного решения
уравнений, если нет полной уверенности в точности алгоритма решения.
Далее приведена окончательная формула искомой точки с декомпозицией
(внимательно отнеситесь к индексам!):

𝐱 = {𝑥𝑖 = 𝑝𝑖 +
𝑣𝑖 (𝑙 ± 2√𝑒2 − 4𝑑𝑓)

2𝑑𝑣0
}
𝑛−1

𝑖=0
, (5)

где
𝑔 =

𝑛−1
∑
𝑖=1

𝑣2𝑖 𝑑 = 𝑔 + 𝑣20

ℎ =
𝑛−1
∑
𝑖=1

(𝑐𝑖 − 𝑝𝑖)
2 𝑒 = 2 (𝑝0𝑔 + 𝑣0 (𝑐0𝑣0 + 𝑘))

𝑘 =
𝑛−1
∑
𝑖=1

𝑣𝑖 (𝑐𝑖 − 𝑝𝑖) 𝑓 = 𝑣20 (𝑐20 − 𝑟2 + ℎ) + 𝑝0 (𝑝0𝑔 + 2𝑣0𝑘)
𝑙 = 2𝑣0 (𝑘 + 𝑣0 (𝑐0 − 𝑝0))

Из формулы3 (5) и геометрического смысла системы (4) очевидно,
3Обратите внимание, что 𝑑 это дополнение суммы 𝑔 до полной размерности 𝑛 вектора 𝑣⃗; а 𝑙 это произве-

дение 2𝑣0 на дополнение суммы 𝑘 до полной размерности 𝑛 вектора 𝑣⃗ и точек 𝐩, 𝐜. Данное замечание может
быть полезно при реализации алгоритма.
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что любая прямая проходящая через центр сферы с 𝑟 > 0 в гладком эвкли-
довом пространстве имеет две точки пересечения с поверхностью сферы.
Поэтому определим функцию 𝜒 (𝐩, 𝑣⃗, 𝐜, 𝑟) как

𝜒 (𝐩, 𝑣⃗, 𝐜, 𝑟) ∶⇔ {𝐱0, 𝐱1} , (6)

где

𝐱0 = {𝑥𝑖 = 𝑝𝑖 +
𝑣𝑖 (𝑙 + 2√𝑒2 − 4𝑑𝑓)

2𝑑𝑣0
}
𝑛−1

𝑖=0
и 𝐱1 = {𝑥𝑖 = 𝑝𝑖 +

𝑣𝑖 (𝑙 − 2√𝑒2 − 4𝑑𝑓)
2𝑑𝑣0

}
𝑛−1

𝑖=0

Замечание. Так как ожидается, что 𝐱 ∈ ℝ𝑛, то формула (5) влечёт явные
ограничения. Так 𝐱 ∉ ℝ𝑛 в следующих случаях:

(a) 𝑣0 = 0, т. е первая компонента вектора 𝑣⃗ системы (4) равна нолю.
В геометрическом смысле вектор 𝑣⃗ ортогонален абсциссе.

(b) ‖𝑣⃗‖ = 0 ⇒ 𝑑 = 0, т. е норма вектора 𝑣⃗ и следовательно сумма 𝑑
квадратов компонент вектора 𝑣⃗ системы (4) вформуле (5) равны
нолю. В геометрическом смысле вектор 𝑣⃗ имеет нулевую длину,
в связи с чем его направление не определено.

(c) 𝑒2 − 4𝑑𝑓 < 0, т. е подкоренное выражение формулы (5) отрица-
тельно. В геометрическом смысле это значит, что поверхность
сферы не имеет общих точек с прямой в гладком эвклидовом
пространстве. Может показаться, что такое невозможно раз уж
прямая проходит через центр сферы, но как всегда есть нюансы:
во-первых это утверждение верно не для всех сочетаний раз-
мерностей; а, во-вторых, особенности обработки чисел с пла-
вающей запятой в практических реализациях алгоритма могут
давать результаты не соответствующие абстрактным математи-
ческим ожиданиям.

2.2. Общее описание алгоритма
В целом алгоритм является вариантом градиентного спуска с допол-

нительной информацией. Стоит напомнить, что согласно разделу 1 аргу-
ментами алгоритма являются:

• размерность пространства 𝑛 ∈ ℕ;

• координаты 𝑚 точек 𝗖 = {𝐜𝑖 ∈ ℝ𝑛}𝑚−1𝑖=0 , 𝑚 ∈ ℕ и 𝑚 > 𝑛;

• недостоверные расстояния 𝑅 = {𝑟𝑖}
𝑚−1
𝑖=0 .
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Пары «точка-расстояние» рассматриваются как описание множества
сфер 𝔖 = {{𝐜𝑖, 𝑟𝑖}}

𝑚−1
𝑖=0 («центр-радиус»), то есть постулируется взаимно од-

нозначное соответствие по индексу известной точки и расстояния от неё
до искомой точки.

Далее приводится пошаговая схема алгоритма:

1. Методом 𝜙 (разд. 2.3.1 (8)) выбирается начальное приближение иско-
мой точки.

𝐩 = 𝜙 (𝗖)

2. Выбирается сфера {𝐜𝑗, 𝑟𝑗}, поверхность которой наиболее удалена
по 𝜇 (разд. 2.1.1 (3)) от 𝐩.

∀ {𝐜, 𝑟} ∈ 𝔖 ∶
𝑚−1
⋀
𝑖=0

𝜇 (𝐩, 𝐜𝑗, 𝑟𝑗) ⩾ 𝜇 (𝐩, 𝐜𝑖, 𝑟𝑖)

3. Методом 𝜒 (разд. 2.1.2 (6)) рассчитывается пара точек 𝗤 = {𝐪0, 𝐪1},
принадлежащих сфере {𝐜𝑗, 𝑟𝑗} и прямой проходящей через точки 𝐜 и 𝐩.

𝗤 = {𝐪0, 𝐪1} = 𝜒 (𝐩, 𝑣⃗, 𝐜𝑗, 𝑟𝑗)

4. К результатам 𝜒 применяется процедура Λ, которая выбирает из па-
ры𝗤 точку, для которой значение 𝜆 (разд. 2.3.2 (9)) больше, или, ины-
ми словами, рассчитывается показатель качества приближения и вы-
бирается наилучшее приближение искомой точки из пары {𝐪0, 𝐪1}.

Λ (𝗤, 𝗖, 𝑅) ∶⇔ (𝐭 ∈ 𝗤 | ∀𝐪 ∈ 𝗤 ∶
|𝗤|−1
⋀
𝑖=0

𝜆 (𝐭, 𝗖, 𝑅) ⩾ 𝜆 (𝐪𝑖, 𝗖, 𝑅)) (7)

5. 𝐩 присваивается значение Λ.

𝐩 = Λ (𝗤, 𝗖, 𝑅)

6. Проверяется утверждение 𝚉 (разд. 2.3.3), если 𝚉 истинно, осуществ-
ляется переход к шагу 8.

7. Переход к шагу 2.

8. Методом𝜓 (разд. 2.3.4 (11)) осуществляется уточнениеприближения
искомой точки.

𝐱 = 𝜓 (𝐩, 𝗖, 𝑅)
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2.3. Предположения
В данном разделе приведены неочевидные предположения, доказуе-

мость которых неустановлена, но они обоснованы рядом аргументов или
проверены эмпирическим путём. При этом надо понимать, что результат
эмпирической проверки может быть статистической флуктуацией.

2.3.1. Выбор начального приближения искомой точки

В принципе строгих ограничений выбора начального приближения
искомой точкине выявлено. В случае еслирасстояниядоискомой точкииз-
вестны точно и являются абсолютно достоверными, то никаких ограниче-
ний на выбор начального приближения нет и можно брать случайную точ-
ку. Но если расстояния до искомой точки недостоверны, то в ряде случаев
при «неудачном» выборе начального приближения, результат работы ал-
горитма может не быть «лучшим», а только «хорошим» приближением.
Это связано с тем, что в данном ряде случаев может быть не одна, а несколь-
ко областей, в которых вероятно присутствие искомой точки. Если гово-
рить в терминах градиентного спуска, то может быть более одного глобаль-
ного экстремума функции 𝜆 и/или ещё и несколько локальных экстрему-
мов, в один из которых и приведёт алгоритм, в случае «плохого» выбора
начального приближения. В связи с этим были изучены несколько подхо-
дов к выбору начального приближения при прочих равных, и проверены
эмпирически на нерепрезентативной выборке:

1. Использовать в качестве начальногоприближенияодинизцентров𝗖.

2. Использовать в качестве начального приближения одну из вершин
параллелограмма (естественно, 𝑛-мерного), грани которого являют-
ся касательными к сферам в различных точках.

3. Использовать в качестве приближения усреднение по точкам 𝗖.
В данном документе не приводится статистика проверок предложенных
методов, в связи с тем, что (1) данный список не исчерпывающий, был про-
верен примерно десяток подходов, но записи о них производились на чер-
новиках и утрачены; (2) выборка при проверке была нерепрезентативна и
при принятии решения бесполезна; (3) ни один из проверенных способов
не показал полного избегания локальных экстремумов, то есть независимо
от выбора подхода возникают ситуации, при которых алгоритм завершает-
ся не в глобальном, а в локальном экстремуме функции 𝜆.

Лучший эмпирический результат показал и наиболее обоснованным
представляется метод 3, в связи с чем функция 𝜙 определена как

𝜙 (𝗖) ∶⇔ {
𝑚−1
∑
𝑖=0

𝑐𝑖,𝑗/𝑚}
𝑛−1

𝑗=0
(8)
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В формуле (8) используется среднее арифметическое, но допустимо поэкс-
периментировать с другими степенными средними, а при достаточно боль-
ших значениях 𝑛 можно испытать и нестепенные средние. По крайней ме-
ре, на момент написания документа, не было сформулировано аргументов
против использования других средних.

В практической реализации алгоритма, если время принятия реше-
ния позволяет или есть возможность параллельных вычислений, можно
снизить вероятность «плохого» выбора начального приближения путём
вычисления алгоритма из нескольких начальных приближений подобран-
ных разнымиметодами, а затем выбрать из нескольких результатов прибли-
жение с наилучшим качеством (см. разд. 2.3.2). Так, например, в прототипе
алгоритма в качестве начального приближения берутся общее усреднение
по известным точкам и попарные усреднения со сдвигом, в последствии
выбирается наилучшее конечное приближение.

2.3.2. Критерий качества точки

Предполагается, что в искомой точке расстояния до всех сфер равны
нолю, а для наилучшего приближения минимальны, в связи с чем критерий
качества точки может быть выражен очень разными способами, дающими,
в общем, сходные результаты. Поэтому в качестве критерия был выбран са-
мый простой, а именно отрицательная сумма расстояний от точки до по-
верхности всех сфер.

𝜆 (𝐩, 𝗖, 𝑅) ∶⇔ −
𝑚−1
∑
𝑖=0

𝜇 (𝐩, 𝐜𝑖, 𝑟𝑖) (9)

Отрицательная сумма взята исключительно из эстетических сообра-
жений, чтобыпоказатель качества рос с приближениемк точкепересечения
сфер, в которойоночевиднообращается в ноль, а еслирасстояниянедосто-
верны, то просто максимизируется.

Также как и выбор начального приближения точки, данная функция
качества была проверена эмпирически среди других подходов, показала хо-
роший результат, имеет достаточно очевидную и твёрдую аргументацию
под собой, но не доказательство. Её можно сменить, например, на средние
расстояний или иным образом, исходя из иных предположений о качестве
точки.

2.3.3. Условие последней итерации

Условием последней итерации является истинность утверждения 𝚉.
Само утверждение 𝚉 сильно зависит от решаемой задачи и обстановки ис-
полнения алгоритма. Поэтому будет рассмотрено три варианта утвержде-
ния 𝚉, в зависимости от надёжности значений 𝑅 и требований обстановки.
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Утверждение 𝚉 при абсолютно точных значениях 𝑅. Так, в случае если
расстояния от известных точек до искомой достоверны и абсолютно точ-
ны4, то последней считается итерация, после которой сумма расстояний от
найденного приближения до поверхности всех сфер равна нолю или ма-
шинному 𝜀 (эпсилон).

𝚉 ⇔
𝑚−1
∑
𝑖=0

𝜇 (𝐩, 𝐜𝑖, 𝑟𝑖) = 0

При истинности такого утверждения шаг 8 алгоритма можно пропустить,
так как уточнять приближение не требуется, да и невозможно. Но вероят-
ность возникновения такой ситуации в реальности стремиться к нолю, по-
этому рассмотрим другое утверждение 𝚉 при ухудшении обстановки.
Утверждение 𝚉 при недостоверных значениях𝑅 и известной допустимой
ошибке приближения Δ. Предположим, множество 𝑅 содержит заведо-
мо неточные расстояния, но для принятия решения, необходимо прибли-
жение, расположенное не далее, чем в Δ от искомой точки. В таком случае,
учитывая, что на шаге 5 алгоритма ∃𝗦𝑖 ∈ 𝔖 ∶ 𝐩 ∈ 𝗦𝑖 ⇒ 𝜇 (𝐩, 𝐜𝑖, 𝑟𝑖) = 0, то если
расстоянияот данногоприближениядовсехиз𝑚−1приближений, которые
могут быть получены относительно других сфер, меньше Δ, утверждение 𝚉
истинно.

𝚉 ⇔
𝑚−1
⋀
𝑖=0

𝜇 (𝐩, 𝐜𝑖, 𝑟𝑖) < Δ

В зависимости от задачи и обстановки можно использовать строгое и
нестрогое сравнение.

Необходимо понимать, что использование такого утверждения воз-
можно только тогда, когда погрешность измерения в датчике-источнике
значений 𝑅 существенно меньше Δ. Иными словами, если известно мато-
жидание погрешности датчиков-источников𝑅, то допустимо использовать
эту величину с запасом (например, 2 × 3𝜎) в качестве Δ. Если же Δ меньше
погрешности датчиков-источников значений 𝑅, возникнет ситуация, при
которой состояние «𝚉 истинно» недостижимо, в связи с чем рассмотрим
наихудшую обстановку.
Утверждение 𝚉 при недостоверных значениях 𝑅 и отсутствии информа-
ции о допустимой ошибке приближения. Наихудшая ситуация, но и
наиболее частая на практике: значения 𝗖 и 𝑅 недостоверны и информации
о величине возможной ошибки нет и не предвидится. Для этого было эм-
пирически выработано утверждение 𝚉, которое может показаться избыточ-
ным, однако, соответствуют неким ситуациям, возникшим в ходе эксплуа-
тации реализации алгоритма. В связи с вышеизложенным, если нет уверен-

4В контексте документа абсолютно точными можно считать значения 𝑅 при абстрактном анализе
алгоритма без использования актуальных значений, либо ситуацию, когда ошибка измерения в датчи-
ке-источнике значений 𝑅 существенно меньше машинного 𝜀 (эпсилон).
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ности в минимальной стабильности обстановки работы алгоритма, реко-
мендуется использовать данное или ещё более строгое относительно дан-
ного утверждение 𝚉.

𝚉 ⇔ (∀𝜆 ∈ 𝐿 ∶
𝜔
⋀

𝑖=𝜔−𝑚2
𝜆𝑚𝑎𝑥 ⩾ 𝜆 (𝐩𝑖, 𝗖, 𝑅)) ∨ 𝜔 ⩾ (𝑤𝑚) , (10)

где

𝜔 — номер текущей итерации алгоритма, увеличение 𝜔 на еди-
ницу происходит на шаге 7 алгоритма;

𝐿 = {𝜆 (𝐩𝑖, 𝗖, 𝑅)}
𝜔
𝑖=𝜔−𝑚2 — множество значений функции 𝜆 для𝑚2

последних итераций, соответственно 𝐩𝑖 – приближение 𝑖-той
итерации;

𝜆𝑚𝑎𝑥 ∣ ∀𝜆 ∈ {𝜆 (𝐩𝑖, 𝗖, 𝑅)}
𝜔−1
𝑖=0 ∶

𝜔−1
⋀
𝑖=0

𝜆𝑚𝑎𝑥 ⩾ 𝜆 (𝐩𝑖, 𝗖, 𝑅) —
максимальное значение функции 𝜆 среди всех итераций
алгоритма, кроме последней;

𝑤 — предопределённая константа, которая определяет макси-
мально возможное количество итераций из расчёта на количе-
ство известных сфер, иными словами, если прошло (𝑤𝑚) итера-
ций, то производим уточнение 𝜓 и возвращаем результат.

𝑤 выбирается исходя из ограниченийпо времении впрототипе опре-
делено как 100 на сферу (см. раздел 3.2.2), а значит прототип всегда завер-
шается после 100𝑚 итераций и переходит к уточнению 𝜓. Очевидно, что
𝑤 должно выбираться так, что 𝑤 > 𝑚, ведь в ином случае становится бес-
смысленным сравнение с 𝜆𝑚𝑎𝑥 для последних 𝑚2 итераций, либо должен
быть снижен критерий количества итераций без улучшения под 𝑚2.

Данное условие обосновано только эмпирически и может быть изме-
нено в соответствии с иными представлениями об обстоятельствах влеку-
щих завершение работы алгоритма. Дополнительные соображения по вы-
бору 𝑤 в условиях строгих ограничений на время исполнения алгоритма
приведены в замечании к разделу 3.2.2.

2.3.4. Уточнение приближения последней итерации

Учитывая, что все точки полученные как значение функции 𝜒 при-
надлежат поверхности одной из известных сфер, а при неточных значени-
ях расстояний 𝑅 сферы вероятнее всего не имеют единой точки пересече-
ния, следовательно любое приближение принадлежащее одной из сфер бу-
дет иметь ненулевое расстояние до одной или более других сфер. В связи с
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этим имеет смысл уточнять приближение полученное после установления
истинности высказывания 𝚉 таким образом, чтобы в идеальном случае (ко-
гда расстояние от приближения до всех сфер равно нолю) уточнение не пе-
ремещало точку 𝐩. В числе прочих для этого подходит усреднение по𝑚 точ-
кам, которые являются результатом выбора лучшего приближения для каж-
дой из известных сфер от текущего приближения, или в символах:

𝜓 (𝐩, 𝗖, 𝑅) ∶⇔ {
𝑚−1
∑
𝑖=0

𝑡𝑖,𝑗/𝑚}
𝑛−1

𝑗=0
, (11)

где
𝗧 = {𝐭𝑖 = Λ (𝜒 (𝐩, 𝑣⃗, 𝐜𝑖, 𝑟𝑖) , 𝗖, 𝑅)}

𝑚−1
𝑖=0

иΛ—процедура (7), определённая дляшага 4 общего описания алгоритма
в разделе 2.2.

Данный подход выбирался исходя из ситуации полной неопределён-
ности погрешности датчиков-источников𝑅 и даже более сильном условии,
состоящим в том, что сама искомая точка принципиально не определяема
точно. Поэтому, исходя из особенностей частной обстановки применения
алгоритма, вполне возможно, что и среднее арифметическое, и метод Λ, и
процедура уточнения в целом могут быть изменены на релевантные специ-
фичным условиям применения алгоритма.

3. Прототип
Прототип представляет собой реализацию вышеописанного алго-

ритма на языкеC.Прототип не является строго оптимальной реализацией
алгоритма и предназначен для проверки возможных изменений алгоритма
и сравнения результатов (регресс-оценки).Но в целом, если к программно-
му обеспечению не предъявляется строгих требований по времени и про-
странству исполнения, то можно использовать прототип «как есть».

3.1. Состав прототипа
Получить копию прототипа можно по адресу:

https://ggs.void.r4in.tk/hk/iterative_point_recovery/archive/master.tar.gz
после чего распаковать полученный архив. Кроме того, при наличии уста-
новленной СКВGit (https://git-scm.com) можно получить копию про-
тотипа командой

git clone https://ggs.void.r4in.tk/hk/iterative_point_recovery.git
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В состав прототипа входят следующие файлы и каталоги:
iterative_point_recovery/

documentation/....исходный код и сопутствующие файлы данного документа,
см. раздел 3.5.

examples/..........исходный код с примерами использования прототипа,
см. раздел 3.3.

src/................исходный код собственно прототипа, см. раздел 3.2.
test_suite/........исходный код проверочного комплекта прототипа, см. раз-

дел 3.4.
visualisation/....набор сценариев для визуализации результатов тестирова-

ния, см. раздел 3.4.
Makefile...........сценарий сборки прототипа, см. раздел 3.2.

Далее рассмотрены составляющие прототипа, даны их краткие опи-
сания и руководства по использованию.

3.2. Прототип. Сборка и описание
Основной блок прототипа представляет собой функцию на языке C,

которая может быть собрана в библиотеку или использована в виде исход-
ного кода «как есть». К основному блоку прототипа относятся:

iterative_point_recovery/
…
src/

include_hd/
iterative_point_recovery.clh......................................

заголовочный (header) файл, содержащийобъявленияфунк-
ций и структур прототипа, см. раздел 3.2.3.

ptrc_hd_settings.clh................................................
заголовочный (header) файл, содержащийнастройкипрото-
типа, см. раздел 3.2.2.

iterative_point_recovery.clc..........................................
файл, содержащий определения функций прототипа,
см. раздел 3.2.3.

…
Makefile...........сценарий сборки прототипа в библиотеку, см. раздел 3.2.1.

3.2.1. Сборка и установка прототипа

Сборка. Для сборки по умолчанию необходимо перейти в каталог
iterative_point_recovery и выполнить команду

make
Если команда завершена без ошибок, то в катало-
ге iterative_point_recovery/build появится файл
libIterPntRcv.so.I.J и несколько несколько служебных файлов. В
имени файла I – основная версия библиотеки, а J – дополнительная.
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При необходимости возможна сборка для отладки (debug) командой
make debug

Если при сборке указать переменную GPGPU_DEV_IDX=N, например
так

make GPGPU_DEV_IDX=0
то, при наличии установленного пакета OpenCL_helpers (https://ggs.
void.r4in.tk/hk/OpenCL_helpers), кроме обычной библиотеки будет
собрана OpenCL-библиотека с прототипом для GPGPU-устройства с
индексом N в системе. Если пакет OpenCL_helpers был установлен не
в путь по умолчанию, то надо указать актуальный путь в перемен-
ной OCLH_PATH=путь_установки. После сборки с указанием перемен-
ной GPGPU_DEV_IDX, если сборка завершена без ошибок, в каталоге
iterative_point_recovery/build появится появится дополнительный
файл libIterPntRcv-имя_устройства_GPGPU.clso.
Установка. Установка осуществляется командой

make install
В результате будет создан каталог ~/opt/iterative_point_recovery, ку-
да в подкаталоги lib, include_hd будут скопированы файлы библио-
теки и заголовочные файлы соответственно. Затем целесообразно доба-
вить каталог ~/opt/iterative_point_recovery/lib в переменную окру-
жения LD_LIBRARY_PATH.

Можно изменить целевой путь если задать команду
make PRFX_PATH=путь_установки install

Удаление. Удаление производится командой
make uninstall

либо
make PRFX_PATH=путь_установки uninstall

если установка производилась не в каталог по умолчанию.

3.2.2. Настройки прототипа

Настройка прототипа производится изменением макроопределений
в файле src/include_hd/ptrc_hd_settings.clh:
_PTRC_VAL_T

тип значений с плавающей точкой компонент точек и векторов. До-
пустимые значения half, float, double, long double. Учитывайте,
поддерживается ли данный тип компилятором и математическими
библиотеками или, иными словами, перегружены ли для данного ти-
па операторы +, -, *, / и функции sqrt(), abs(). Также учитывайте,
что на момент написания данного документа тип long double и бо-
лее длинные чаще всего обрабатываются не аппаратно, а программно,
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что влечёт значительное увеличение времени расчётов. В прототипе
данное макроопределение установлено в значение flt32_t.

_PTRC_MAX_ITERATIONS_ON_SPHERE
значение 𝑤 условия 𝚉 (см. разд. 2.3.3 (10)). В прототипе данное мак-
роопределение установлено в значение 100.
Важное замечание: ведение данной настройки может пока-
заться бессмысленным, так как вероятность срабатывания усло-
вия 𝜔 ⩾ (𝑤𝑚) (разд. 2.3.3 (10)) очень мала, но ненулевая. Для RTOS
в условиях строгого ограничения времени эта настройка становит-
ся актуальной, поэтому рекомендуется использовать следующие
подходы для выбора 𝑤:

𝑤 = ⌊ 𝙲𝚞𝚝𝙾𝚏𝚏/ 𝙴𝚡𝚎𝚌𝚃𝑚 ⌋ ,

где
𝑚 — количество известных сфер (датчиков-источников расстоя-
ний);
𝙲𝚞𝚝𝙾𝚏𝚏 — интервал времени отсечки восстановления точки
(по истечении этого интервала результат восстановления теряет
смысл).Может измеряться в секундах (чащенано- илимикро-) для
гибридных архитектур процессоров или в тактах для традицион-
ных архитектур;
𝙴𝚡𝚎𝚌𝚃 — интервал времени выполнения (в тех же единицах, что
и 𝙲𝚞𝚝𝙾𝚏𝚏) функции _ptrc_recoverPoint() (см. раздел 3.2.3) при
_PTRC_MAX_ITERATIONS_ON_SPHERE определённом как 1, аргумен-
те u64NofRuns равном 1 и точном выходе по условию 𝜔 ⩾ (𝑤𝑚).

Оценка 𝙴𝚡𝚎𝚌𝚃 для традиционных архитектур процессоров должна
показывать постоянное время отличающееся от запуска к запуску
менее, чем на время одного такта процессора и может оцениваться
по количеству машинных команд. Если такого не наблюдается или
используется процессор гибридной архитектуры, то рекомендуется
брать максимальное значение 𝙴𝚡𝚎𝚌𝚃 не менее чем от 10000 замеров,
так как практические оценки показывают, что кривая времени для
гибридных архитектур достаточно сглаживается только на 10-ти ты-
сячах и более замеров.
При замерах необходимо учитывать контур размещения внутрен-
них часов процессора, по возможности использовать замеры време-
ни по часам на внутреннем контуре. Необходимо учитывать количе-
ство регистров часов и возможность множественных переполнений.
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Данный подход сформулирован исходя из пессимистичных сообра-
жений оценки времени и тактов исполнения, и даёт время/такты
«с запасом», что идеологически верно, однако при уверенности в
стабильности работы архитектуры и константных оценках време-
ни/тактов можно добавить оптимизма и, проведя поблочную оцен-
ку времени исполнения одной итерации алгоритма в прототипе,
уточнить оценку приемлемого значения 𝑤.

_PTRC_NONRECONSTRUCTABLE_PNT_ERR
значение возвращаемое функцией в случае когда нет возможности
сформировать приближение искомой точки или, иными словами это
код ошибки «точка не восстанавливаема». Такая ошибка возвраща-
ется в случае если 𝑚 < 𝑛 + 1 (см. сноску 2 на стр. 3); в случаях из за-
мечания на стр. 6; и если указано нулевое количество проверяемых
начальных приближений (см. аргумент u64NofRuns основной функ-
ции прототипа в разделе 3.2.3). В прототипе данное макроопределе-
ние установлено в значение 73.

_PTRC_MEMALLOC_ERR
значение функции, возвращаемое в случае ошибки выделения па-
мяти. В прототипе данное макроопределение установлено в значе-
ние -150.

3.2.3. Функции и структуры прототипа

Почти все структуры и функции объявлены и определены таким
образом, что прототип без изменений компилируется как компилятором
соответствующим стандарту C11 (ISO/IEC 9899:2011), так и компилято-
рами OpenCL-диалекта С версии 1.2 и выше. Это достигается за счёт ши-
рокого использования препроцессора языка C и макроопределением, ука-
зывающим, что необходимо осуществлять сборку дляOpenCL-диалектаС,
является макроопределение _OCLH_OCL_COMPILER_ – если оно опреде-
лено, то препроцессор сгенерирует код OpenCL-диалекта С, в ином
случае будет сгенерирован код соответствующий стандарту C11. Са-
мостоятельно определять _OCLH_OCL_COMPILER_ нет необходимости,
если вы используете пакет OpenCL_helpers, который автоматически
определяет данный макрос при компиляции. Кроме того, в связи с
особенностями выделения памяти на GPGPU и вычислительных ак-
селераторах, код OpenCL-диалекта С использует заголовочный файл
oclh_d_mem_alloc.clh пакета OpenCL_helpers.
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Важное замечание: Пакет OpenCL_helpers реализует единый
механизм выделения памяти для вычислительных акселераторов
как без прямого доступа к оперативной памяти несущего компью-
тера, так и с таким доступом. Но для акселераторов с доступом
данный механизм может работать медленнее, чем реализации
malloc()/free() от их производителей. Для использования
выделения, проверки и освобождения памяти релевантных
диалекту OpenCL-диалекта С конкретного вычислительного
акселератора необходимо переопределить макропределения
__PTRC_VAL_T_alloc_and_check и __PTRC_VAL_T_free в файле
src/include_hd/iterative_point_recovery.clh.

Структура, описывающаяисходные данные. Исходные данные хранят-
ся и передаются в структуре

typedef struct _PTRC_INPUT_DATA {
uint64_t u64D;

__private _PTRC_VAL_T* pfCnt;
__private _PTRC_VAL_T* pfRds;

uint64_t u64NofS;
} _PTRC_INDAT;

Модификаторы __private не имеют смысла для языка C стандарта C11
и будут проигнорированы в соответствии с макроопределением. Для
OpenCL-диалекта С эти модификаторы обозначают, что указатели указы-
вают на собственную память нити исполнения.
u64D

размерность пространства.
pfCnt

указатель на координаты u64NofS центров известных сфер, по
u64D значений для каждого центра.

pfRds
указатель на u64NofS неточных расстояний от центров известных
сфер до искомой точки.

u64NofS
количество известных сфер.

Основная функция прототипа. Основной функцией прототипа являет-
ся _ptrc_recoverPoint() и для стандарта C11 она объявлена как

int32_t _ptrc_recoverPoint( _PTRC_VAL_T* const pfDst,
_PTRC_VAL_T* const pfQlt,

const _PTRC_INDAT in,
const uint64_t u64NofRuns)

17



а для OpenCL-диалекта С как

int32_t _ptrc_recoverPoint(__private _PTRC_VAL_T* const pfDst,
__private _PTRC_VAL_T* const pfQlt,
__private const _PTRC_INDAT in,
__private const uint64_t u64NofRuns,
_GDM_heap_PROTO(__private))

Функция возвращает 0 в случае нахождения приближения,
_PTRC_MEMALLOC_ERR – в случае ошибки выделения памяти и
_PTRC_NONRECONSTRUCTABLE_PNT_ERR – в случае если восстановление
точки не представилось возможным (коды ошибок см. в разд. 3.2.2).
in

исходные данные в виде структуры _PTRC_INDAT.
pfDst

указатель на память размером не менее чем in.u64D размеров
_PTRC_VAL_T, где будет сохранено лучшее найденное приближение.

pfQlt
указательнапамятьразмеромнеменее чемодинразмер_PTRC_VAL_T,
где будет сохранен показатель качества 𝜆 (см. раздел 2.3.2) лучшего
найденного приближения.

u64NofRuns
количество начальных приближений, от которых будет произве-
дён поиск наилучшего приближения. Первое начальное прибли-
жение является усреднением по центрам известных сфер, по-
следующие начальные приближения являются попарными усред-
нениями известных центров сфер со сдвигом к лучшему най-
денному приближению. Если u64NofRuns<1, то функция вернёт
_PTRC_NONRECONSTRUCTABLE_PNT_ERR.

_GDM_heap_PROTO(__private)
макроопределение-прототип собственной «кучи» нити испол-
нения OpenCL для выделения памяти. При вызове функции
в качестве данного аргумента передаётся макроопределение
_GDM_heap_ARG(__private). Перед использованием макроопре-
деления _GDM_heap_ARG(__private) собственная «куча» нити
исполнения должна быть инициализирована макроопределением
_GDM___private_heap_init().

Внутренние функции и структуры прототипа. Далее обзорно описа-
ны функции, вызываемые при выполнении _ptrc_recoverPoint(). Мо-
дификаторы __private не имеют смысла для языка C стандарта C11
и будут проигнорированы в соответствии с макроопределением. Для
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OpenCL-диалекта С эти модификаторы обозначают, что указатели указы-
вают на собственную память нити исполнения.

int32_t __ptrc_Phi_meanOfPoints(
__private _PTRC_VAL_T* const pfDstPnt,
__private const _PTRC_VAL_T* const pfSrcPnt,
__private const uint64_t u64D,
__private const uint64_t u64NofSrcPnts)

int32_t __ptrc_meanOfPointsBiased(
__private _PTRC_VAL_T* const pfDstPnt,
__private const _PTRC_VAL_T* const pfSrcPnt,
__private const _PTRC_VAL_T* const pfBiasPnt,
__private const uint64_t u64D,
__private const uint64_t u64NofSrcPnts)

Функции являются реализациями функции 𝜙 (разд. 2.3.1) и осуществляют
выбор начального приближения. Функция __ptrc_Phi_meanOfPoints()
сохраняет в pfDstPnt усреднение по точкам pfSrcPnt. Функция
__ptrc_meanOfPointsBiased() сохраняет в pfDstPnt усреднение по
точкам pfSrcPnt со сдвигом к pfBiasPnt. u64D и u64NofSrcPnts — раз-
мерность пространства и количество исходных точек соответственно.

int32_t __ptrc_onePointRoutine(__private _PTRC_VAL_T* const pfPnt,
__private const _PTRC_INDAT in,
_GDM_heap_PROTO(__private))

Функция является реализацией шагов 2–8 алгоритма (разд. 2.2)
для исходных данных in и одного начального приближения pfPnt,
по этому же указателю будет сохранено найденное приближе-
ние. Для вызова функции в программах стандарта C11 аргу-
мент _GDM_heap_PROTO(__private) не указывается; для вызова функции в
программах OpenCL-диалекта С в качестве данного аргумента передаётся
макроопределение _GDM_heap_ARG(__private). Перед использованием
макроопределения _GDM_heap_ARG(__private) собственная «куча»
нити исполнения должна быть инициализирована макроопределением
_GDM___private_heap_init().

_PTRC_VAL_T __ptrc_Lambda_quality(
__private const _PTRC_VAL_T* const pfPnt,
__private const _PTRC_INDAT in)

Функция является реализацией функции 𝜆 (разд. 2.3.2 (9)) и возвращает
значение качества приближения pfPnt для исходных данных in.
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int32_t __ptrc_copyVec(__private _PTRC_VAL_T* const pfDst,
__private const _PTRC_VAL_T* const pfSrc,
__private uint64_t u64D)

Функция копирования вектора/точки pfSrc размерности u64D в век-
тор/точку pfDst.

uint64_t __ptrc_idxOfFarestSphere(
__private const _PTRC_VAL_T* const pfPnt,
__private const _PTRC_INDAT in)

Функция выбора наиболее удалённой сферы реализует шаг 2 алгорит-
ма (разд. 2.2) и функцию 𝜇 (разд. 2.1.1 (3)). Возвращает индекс сферыиз ис-
ходных данных in, поверхность которой наиболее удалена от точки pfPnt.

int32_t __ptrc_nextPntAndQuality(
__private _PTRC_VAL_T* const pfDst,
__private const _PTRC_VAL_T* const pfPnt,
__private const _PTRC_INDAT in,
__private const uint64_t u64IdxOfSphere,
__private _PTRC_VAL_T* const pfQuality,
_GDM_heap_PROTO(__private))

Функция реализует шаги 3–4 алгоритма (разд. 2.2). От приближе-
ния pfPnt рассчитывается новое приближение к сфере из in с ин-
дексом u64IdxOfSphere. Новое приближение сохраняется по указате-
лю pfDst; показатель качества нового приближения сохраняется по ука-
зателю pfQuality. Допустимо передавать в качестве pfDst и pfPnt
один адрес. Для вызова функции в программах стандарта C11 аргу-
мент _GDM_heap_PROTO(__private) не указывается; для вызова функции
в программах OpenCL-диалекта С в качестве данного аргумента пере-
даётся макроопределение _GDM_heap_ARG(__private). Перед использо-
ванием макроопределения _GDM_heap_ARG(__private) собственная «ку-
ча» нити исполнения должна быть инициализирована макроопределени-
ем _GDM___private_heap_init().

int32_t __ptrc_Psi_refineApproximation(
__private _PTRC_VAL_T* const pfPnt,
__private const _PTRC_INDAT in,
_GDM_heap_PROTO(__private))

Функцияреализует процедуру𝜓 (разд. 2.3.4 (11)).Дляприближения pfPnt
и исходных данных in рассчитывается уточнение приближения, которое
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сохраняется по указателю pfPnt. Для вызова функции в программах стан-
дартаC11 аргумент_GDM_heap_PROTO(__private)не указывается; для вы-
зова функции в программах OpenCL-диалекта С в качестве данного ар-
гумента передаётся макроопределение _GDM_heap_ARG(__private). Пе-
ред использованием макроопределения _GDM_heap_ARG(__private) соб-
ственная «куча» нити исполнения должна быть инициализирована мак-
роопределением _GDM___private_heap_init().

_PTRC_VAL_T __ptrc_EuclDist(__private const _PTRC_VAL_T* const pfA,
__private const _PTRC_VAL_T* const pfB,
__private uint64_t u64D)

Функция расчёта расстояния в эвклидовой метрике, реализует функ-
цию 𝛿 (разд. 2.1.1 (2)). Возвращает значение расстояния между точка-
ми pfA и pfB в пространстве размерности u64D.

int32_t __ptrc_Chi_intersections(__private _PTRC_VAL_T* const pfDst,
__private const _PTRC_VAL_T* const pfP,
__private const _PTRC_VAL_T* const pfV,
__private const _PTRC_VAL_T* const pfC,
__private const _PTRC_VAL_T fR,
__private const uint64_t u64D)

Функция реализует функцию 𝜒 (разд. 2.1.2 (5) и (6)). Функция в про-
странстве размерности u64D рассчитывает пару точек, в которых прямая,
проходящая через точки pfP и pfC, пересекает поверхность сферы с цен-
тром в pfC и радиусом fR. Результат (пара точек) сохраняется по указате-
лю pfDst.

_PTRC_DEFL_VARS __ptrc_deflFunc(__private const _PTRC_VAL_T* const P,
__private const _PTRC_VAL_T* const V,
__private const _PTRC_VAL_T* const C,
__private const uint64_t u64D,
__private const _PTRC_VAL_T r)

_PTRC_GHK_VARS __ptrc_ghkFunc(__private const _PTRC_VAL_T* const P,
__private const _PTRC_VAL_T* const V,
__private const _PTRC_VAL_T* const C,
__private const uint64_t u64D)

Функции рассчитывают значения 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑘, 𝑙 формулы (5) раздела 2.1.2.
Возвращают структуры, содержащие эти значения:
typedef struct _PTRC_G_H_K_VARS {

_PTRC_VAL_T g; _PTRC_VAL_T h; _PTRC_VAL_T k;
} _PTRC_GHK_VARS;

typedef struct _PTRC_D_E_F_L_VARS {
_PTRC_VAL_T d; _PTRC_VAL_T e; _PTRC_VAL_T f; _PTRC_VAL_T l;

} _PTRC_DEFL_VARS;
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3.3. Примеры использования прототипа в приложениях
Кпримерамиспользованияпрототипа в приложениях относятся сле-

дующие файлы:
iterative_point_recovery/

…
examples/

Makefile.......сценарий сборки примеров.
point_recovery_kernel.clc..............................................

файл, содержащий определение ядерной GPGPU-функции,
вызывающей _ptrc_recoverPoint().

point_recovery-C11.c....................................................
файл, содержащий исходный код консольного приложения,
вызывающего функцию _ptrc_recoverPoint().

point_recovery-OpenCL.c................................................
файл, содержащий исходный код консольного прило-
жения, разворачивающего инфраструктуру OpenCL
и запускающего ядерную GPGPU-функцию из файла
point_recovery_kernel.clc.

…
Для сборкипримерана языкеCстандартаC11необходимо, находясь

в каталоге iterative_point_recovery/examples, выполнить команду
make c11

Если прототип установлен не в каталог по умолчанию, то при сбор-
ке необходимо указывать актуальный путь (префикс) в переменной
окружения IPR_PATH. Если команда make завершена без ошибок, то
в каталоге iterative_point_recovery/examples/build появится
файл ptrc_example-c11. Запуск данного файла приведёт к выводу
входных данных и результирующего приближения, рассчитанного
функцией _ptrc_recoverPoint(). При этом в переменной окружения
LD_LIBRARY_PATH должен быть путь к файлу libIterPntRcv.so.0.0 (по
умолчанию ~/opt/iterative_point_recovery/lib).

Несколько иначе осуществляется сборка прототипа для
OpenCL-диалекта С. Предполагается, что установлен пакет
OpenCL_helpers, и прототип собран (см. разд. 3.2.1) с указанием ин-
декса устройства GPGPU. Тогда выполнение команды

make GPGPU_DEV_IDX=N opencl
(где N — тот же индекс устройства GPGPU, который был
указан при сборке прототипа) приведёт к появлению в ка-
талоге iterative_point_recovery/examples/build фай-
ла ptrc_example-ocl-имя_устройства_GPGPU. Запуск данного файла
приведёт к выводу входных данных и результирующего приближе-
ния, рассчитанного функцией _ptrc_recoverPoint(). При этом в
переменной окружения LD_LIBRARY_PATH должен быть путь к файлу
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liboclh.so.0.0 (по умолчанию ~/opt/oclh/lib). В ходе выполнения
файла ptrc_example-ocl-имя_устройства_GPGPU ведётся журнал в
файле ipr_oclh.log, где отображаются события и действия связанные с
OpenCL инфраструктурой.

Сами файлы содержащие примеры использования, не превышают
50-ти строк кода достаточно прозрачного для дальнейшей интеграции
прототипа в приложения.

3.4. Проверка и оценка прототипа. Визуализация результа-
тов

3.4.1. Проверочный комплект

Проверочный комплект состоит из следующих файлов:
iterative_point_recovery/

…
test_suite/

Makefile.......сценарий сборки проверочного комплекта.
ptrc_test_settings.h....................................................

файл, содержащий настройки проверочного комплекта.
ptrc_test.c...файл, содержащий исходный код проверочного комплекта.

…
Проверочный комплект реализован только для проверки алгорит-

ма на языке C стандарта C11, исходя из предположения, что алгоритм на
OpenCL-диалекте С идентичен за исключением округлений и случаев оп-
тимизации обработки числе с плавающей запятой.

Для сборкипримерана языкеCстандартаC11необходимо, находясь
в каталоге iterative_point_recovery/test_suite, выполнить команду

make stable
или

make debug
если необходима сборка с отладочной информацией. Ес-
ли команда make завершена без ошибок, то в каталоге
iterative_point_recovery/test_suite/build появится
файл ptrc_test. Запуск данногофайла приведёт к выполнениюпроцедуры
проверки в соответствии с настройками из файла ptrc_test_settings.h,
которые описаны ниже.

При проверке одного случая проверочный комплект выбирает псев-
дослучайные точки в пространстве ℝ𝑛, затем рассчитывает расстояния от
точек до последней из них и вносит псевдослучайную погрешность в рас-
считанные расстояния. Таким образом формируются данные, где первые
точки–центрысфер, расстояния спогрешностью–радиусы сфер, а послед-
няя точка – искомая. Этот блок данных передаётся функции восстановле-
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ния точки _ptrc_recoverPoint(), после чего рассчитывается расстояние
от полученного приближения до последней псевдослучайной точки, что
интерпретируется как ошибка приближения. Такие параметры как размер-
ность пространства, интервал выбора псевдослучайных точек, количество
известных сфер и максимальная погрешность датчика-источника расстоя-
ния задаются в настройках проверочного комплекта.
Сводка настроек проверочного комплекта. Настройки проверочного
комплекта хранятся в файле ptrc_test_settings.h и представляют со-
бой накроопределения на языкеC, в связи с чем после изменения настроек
необходима пересборка проверочного комплекта в порядке описанном в
разделе 3.4.1.
_PTRC_TS_DIMENSIONALITY

размерность пространства.
_PTRC_TS_NUM_OF_SPHERES

количество известных сфер (пар «центр-радиус»).
_PTRC_TS_NUM_OF_RUNS

количество начальных приближений, от которых будет выполнять-
ся алгоритм. Соответственно, данное количество точек равно коли-
честву запусков алгоритма. Рекомендуется использовать размерность
пространства, увеличенную на единицу.

_PTRC_TS_RANGE_MULTIPLIER
множитель интервала, из которого выбираются проверочные точки.
Так, если _PTRC_TS_RANGE_MULTIPLIER определён как 1.0f, то точки
принадлежат интервалу [−1; 1] по каждой оси координат. При изме-
нении множителя концы интервала умножаются на данное число.

_PTRC_TS_MIN_SENSOR_UNCERTAINTY
начальная относительная случайная инструментальная погрешность
датчика-источника расстояний, которая будет использована припро-
верке.

_PTRC_TS_MAX_SENSOR_UNCERTAINTY
конечная относительная случайная инструментальная погрешность
датчика-источника расстояний, которая будет использована припро-
верке .

_PTRC_TS_SENSOR_UNCERTAINTY_INCREMENT
приращение погрешности датчика-источника расстояний.

_PTRC_TS_NUM_OF_CASES_FOR_ONE_INCREMENT
количество частных случаев, которые будут проверены для одного
значения погрешности датчика-источника расстояний.
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_PTRC_MAX_ITERATIONS_ON_SPHERE
переопределение значения 𝑤 условия 𝚉 (см. разд. 2.3.3 (10), а также
разд. 3.2.2).

_PTRC_TS_STATISTICS_FILENAME
имя файла, в который будет сохранена итоговая статистика результа-
тов проверки. Данный файл используется для визуализации резуль-
татов (см. разд. 3.4.2).

_PTRC_TS_STATISTICS_DISCRETISATION_STEP
частота дискретизации значений ошибки для расчёта статистики.
Так, если частота дискретизации определена как 0.001f, тогда ошиб-
ка приближения 0,00345 … рассматривается в статистике как 0,003.

_PTRC_TS_FLOAT_OUTFORM
формат вывода чисел с плавающей запятой. Соответствует преобра-
зованиям функции printf() из стандартной библиотеки языка C.

_PTRC_TS_DATA_OUTPUT_MODE
значение данного макроопределения несущественно. В случае если
данное макроопределение определено, будет производится маши-
ночитаемый вывод следующих значений разделённых пробельными
символами (значения указаны в порядке вывода):

• погрешность датчика-источника расстояний,

• значение 𝑤 (см. разд. 2.3.3 (10) и 3.2.2),

• размерность пространства,

• количество известных сфер,

• количество проверяемых начальных приближений,

• координаты центров известных сфер,

• неточныерадиусыизвестных сфер (расстояниядоискомойточ-
ки);

затем выводится блок записей итераций, каждая запись состоит из
следующих значений разделённых пробельными символами:

• номер итерации,

• координаты нового приближения,

• качество нового приближения 𝜆 (см. разд. 2.3.2).
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Две последние положительные записи блока итераций отличаются
номером итерации на 2, и это значит, что последняя запись с поло-
жительным номером итерации есть результат уточнения приближе-
ния 𝜓 (см. разд. 2.3.4) и его качество 𝜆; предпоследняя запись в блоке
итераций имеет номер итерации −1 и является окончательным при-
ближением, выбранным из приближений полученных из разных на-
чальных точек; последняя запись в блоке итераций имеет номер ите-
рации −2и содержит координаты«настоящей»искомой точки, а по-
следнее число это эвклидово расстояние до наилучшего выбранного
приближения (т. н. ошибка). Данные значения в таком порядке ма-
шиночитаемы и могут быть использованы для визуализации шагов
алгоритма с помощью сценариев из раздела 3.4.3.

_PTRC_TS_VERBOSE_MODE
значение данного макроопределения несущественно. В случае ес-
ли данное макроопределение определено, будет производится че-
ловекочитаемый вывод о действиях алгоритма при работе функ-
ции _ptrc_recoverPoint(), что позволяет убедиться в соответствии
функции _ptrc_recoverPoint() описанию алгоритма. Данная на-
стройка сделана исключительно в демонстрационных целях. Реко-
мендуется использовать её только в случае проверки единственного
частного случая. Не рекомендуется определять данное макроопреде-
ление в любых других случаях, так как это приводит к объёмному из-
быточному выводу.
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3.4.2. Регресс-оценка прототипа

Визуализация регресс-оценки прототипа реализована в следующих
файлах:

iterative_point_recovery/
…
visualisation/

Scilab/
…
ptrc_statistics.sce.................................................

сценарий Scilab для визуализации результата работы прове-
рочного комплекта для регресс-оценки алгоритма.

…
Wolfram_Mathematica/

…
ptrc_statistics.wls.................................................

сценарийWolfram Mathematica для визуализации результа-
та работы проверочного комплекта для регресс-оценки ал-
горитма.

…
example_stat_report.txt.....................демонстрационные данные.
example_stat_report0.txt...................демонстрационные данные.

…
Визуализация регресс-оценки реализована для пакетов Scilab и
Wolfram Mathematica, описание приводится для пакета Scilab, однако
всё написанное справедливо и для сценария Wolfram Mathematica, за
исключением прямо оговорённых отличий.

Регресс-оценка предназначения для общей статистической оценки
изменения корректности сформированного алгоритмом приближения по-
сле внесения изменений в параметры алгоритма или изменения его отдель-
ных частей. Для регресс-оценки необходимо, используя проверочный ком-
плект, сформировать два файла: первый– содержит статистические данные
для текущей версии алгоритма, а второй – для изменённой.
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Рекомендуемые настройки проверочного комплекта для ре-
гресс-оценки:

#define _PTRC_TS_DIMENSIONALITY по условиям испытаний
#define _PTRC_TS_NUM_OF_SPHERES по условиям испытаний
#define _PTRC_TS_NUM_OF_RUNS по условиям испытаний
#define _PTRC_TS_RANGE_MULTIPLIER 1.0f
#define _PTRC_TS_MIN_SENSOR_UNCERTAINTY 0.0f
#define _PTRC_TS_MAX_SENSOR_UNCERTAINTY 0.5f
#define _PTRC_TS_SENSOR_UNCERTAINTY_INCREMENT 0.01f
#define _PTRC_TS_NUM_OF_CASES_FOR_ONE_INCREMENT 10000ul
#define _PTRC_MAX_ITERATIONS_ON_SPHERE 100ul
#define _PTRC_TS_STATISTICS_FILENAME ”stat_report.txt”
#define _PTRC_TS_STATISTICS_DISCRETISATION_STEP 0.001f
#define _PTRC_TS_FLOAT_OUTFORM ”%.7f”
// #define _PTRC_TS_DATA_OUTPUT_MODE
// #define _PTRC_TS_VERBOSE_MODE

После установки настроек проверочного комплекта, необходимо осуще-
ствить его сборку в порядке указанном в разделе 3.4.1 и запустить получен-
ный исполняемый файл. В результате будет сформирован файл статисти-
ки stat_report.txt, который сохраняется отдельно как данные о текущей
версии алгоритма. В демонстрационных целях для размерности 5 и коли-
чества известных сфер 6 сформирован такой файл и сохранён как

iterative_point_recovery/visualisation/example_stat_report0.txt
Затем необходимо внести желаемые изменения в алгоритм или его на-
стройки, пересобрать проверочный комплект и снова запустить. Так, в раз-
деле 1 был выражен тезис «…в прикладных задачах часто есть возможность
получить данные не с 𝑛 + 1 датчиков, дающих неточные значения, а с большего
их (датчиков) количества … дополнительная информация может (и должна)
улучшать приближение искомойточки…».Для демонстрации справедливо-
сти этого тезиса для размерности 5 и количества известных сфер 9 сформи-
рован файл статистики и сохранён как

iterative_point_recovery/visualisation/example_stat_report1.txt
Иными словами, далее в примерах сравнивается точность работы алгорит-
маприпоиске точки впятимерномпространстве при6-тии9-тиизвестных
сферах (парах «точка-расстояние»).

На данном этапе доступны два файла: первый – со статистиче-
ской оценкой исходной версии прототипа (example_stat_report0.txt);
второй – со статистической оценкой изменённой версии прототипа
(example_stat_report1.txt). Теперь в файле (для сценария Scilab):

visualisation/Scilab/ptrc_statistics.sce
либо (для сценарияWolframMathematica):

visualisation/Wolfram_Mathematica/ptrc_statistics.wls
необходимо изменить значения переменных
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dataFile0=”../example_stat_report0.txt”;
dataFile1=”../example_stat_report1.txt”;

на актуальные. Здесь dataFile0–путь к первомуфайлу с данными текущей
версии прототипа, и, соответственно, dataFile1 – путь к второму файлу с
данными изменённого прототипа.После чего сохраните файл и выполните
его командой (для сценария Scilab):

scilab -f ptrc_statistics.sce -quit
либо (для сценарияWolframMathematica):

wolframscript -f ptrc_statistics.wls
Для сценария Scilab можно не указывать ключ -quit, а в дальней-
шем перезапускать сценарий из открытой оболочки Scilab. Для сценария
Wolfram Mathematica, чтобы сохранить сценарий открытым в оболочке с
возможностью перезапуска откройте его командой:

Mathematica ptrc_statistics.wls
В результате выполнения данного сценария будут сохранены файлы
errors.png, errors.svg и solves.png, solves.svg.
Визуализация регресс-оценки по ошибкам приближений. Рассмотрим
для начала файл errors.png (или svg в векторном представлении). Со-
держимое файла выглядит примерно как на рис. 2. Сплошная синяя линия
описывает математическое ожидание величины ошибки для условий опи-
санных в легенде к графику, в приведённом примере это: размерность 5,
известных сфер 6, множитель интервала выбора точек 1.0, количество про-
веренных начальных приближений 6; погрешность датчика при оценке из-
менялась от 0 до 0.5 сшагомприращения 0.01, для каждой погрешности бы-
ло испытано 10000 случаев, частота дискретизации значений ошибки 0.001.
Как и было указано в разделе 1 «алгоритм должен демонстрировать пря-
мую корреляцию качества своей работы иточности датчиков выдающих рас-
стояния 𝑅, а в таком случае оценка расстояния между алгоритмически вы-
численной и искомой точкой будет не оценкой алгоритма, а оценкой точно-
сти датчиков, причём косвенной», что и можно наблюдать в данном приме-
ре, так как видно, что математическое ожидание ошибки растёт с ростом
погрешности датчика, однако очевидно, чем алгоритм лучше, тем матема-
тической ожидание ошибки при оценке должно быть ниже. Светло-синяя
пунктирная линия это, согласно легенде, сумма математического ожидания
с одним среднеквадратичным (стандартным) отклонением, чем она ближе
к математическому ожиданию, тем алгоритм лучше. Светло-синие точеч-
ные линии это минимумы и максимумы, соответственно. С одной сторо-
ны, чем ближе минимумы и максимумы к математическому ожиданию, тем
лучше, но с другой стороны большинство таких максимизированных вы-
бросов обусловлены не качеством алгоритма как такового, а ситуациями,
когда выбранные для оценки точки находятся близко к одной гиперплос-
кости, что приводит к возникновению нескольких областей с примерно
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Рис. 2: Статистика ошибок приближений.

одинаковыми качествами приближений и неопределённости в выборе (по-
добный пример будет рассмотрен в разделе 3.4.3). Представляется очевид-
ным, что, в случае если известные точки принадлежат одной гиперплоско-
сти, местонахождение искомой точки становится полностью неопределён-
ным, поэтому при решении практических задач необходимо следить, что-
бы датчики-источники расстояний по возможности не принадлежали и не
находились близко к одной гиперплоскости.
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Сплошная красная, пунктирная и точечная светло-красные линии
отображают, соответственно, математическое ожидание, сумму математи-
ческого ожидания и среднеквадратичного отклонения, минимумы и мак-
симумы для испытаний второго варианта алгоритма или условий. Так, из
легенды к графику можно видеть, что условия для испытаний, при кото-
рых получены красные показатели, отличаются только количествомизвест-
ных сфер. По сравнению с 6-ю известными сферами 9 известных сфер сни-
жают математическое ожидание ошибки и уменьшают среднеквадратичное
отклонение ошибки.

Увеличение точности приближений с ростом количества известных
сфер ожидаемо, но не бесплатно, стоимость такого увеличения точности
рассматривается в следующем параграфе.
Визуализация регресс-оценки по количеству произведённых действий.
Для данного варианта алгоритма самым затратным повторяющимсяшагом
является расчёт формулы 𝜒 (разд. 2.1.2 (5) и (6)) с последующим вычисле-
нием качества 𝜆 (разд. 2.3.2 (9)) для двух приближений при осуществлении
выбора. Так как для каждого вычисления 𝜒 производится вычисление 𝜆, в
проверочном комплекте в глобальной переменной fSolves осуществляет-
ся подсчёт таких шагов для каждого испытанного случая. Полученная ста-
тистика отображается на графике в файле solves.png (или svg в вектор-
ном представлении). Содержимое файла выглядит примерно как на рис. 3.
Цветовые обозначения и формы линий аналогичны таковым при визуали-
зации статистики ошибок приближений.Так линии синего и светло-синего
цветов соответствуют данным первого набора испытаний (эталонного), а
линии красного и светло-красного цвета соответствуют данным второго
набора испытаний (для изменённого алгоритма или условий). Сплошная
линия в контексте данного графика обозначает математическое ожидание
количества шагов (вычислений 𝜒) к погрешности датчика-источника рас-
стояний, пунктирная линия показывает сумму математического ожидания
и стандартного отклонения количества шагов, точечные линии отобража-
ют минимумы и максимумы соответственно их расположению.

Из представленного примера видно, что при изменении условий ис-
полнения алгоритма от 6-и к 9-и известным сферам количество расчётов
увеличилось. Иными словами, изменение количества известных сфер дела-
ет найденное приближение точнее, но увеличивает время выполнения ал-
горитма для одного случая. Необходимо учитывать данное обстоятельство
при формировании входящих данных для алгоритма, так, например, при
ограничении времени и наличии нескольких датчиков-источников рассто-
яний имеет смысл не использовать все известные сферы, а выбирать, толь-
ко 𝑛 + 1 тех из них, центры которых, которые наиболее удалены от одной
гиперплоскости. Окончательный выбор входных данных должен произво-
дится исходя из отмеченного обстоятельства зависимости точности и вре-
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Рис. 3: Статистика количеств расчётов формулы 𝜒.

мени исполнения, объективных ограничений и рисков обстановки испол-
нения алгоритма.
Данные по каждому испытанию. Конкретные предполагаемые условия
эксплуатации алгоритма могут потребовать дополнительной обработки и
более тонких манипуляций со статистикой испытаний, поэтому в файле со
статистикой сохраняются значения ошибок и количество шагов для каж-
дого испытанного случая.
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Значения ошибок представлены в виде:

Sensor_uncertainty Raw_Deltas
0.0000000 0.0000018 0.0000024 0.0000140 ...
0.0100000 0.0380290 0.0628870 0.0381434 ...
0.0200000 0.1352121 0.2248735 0.0489258 ...
... ... ... ...

Здесь число в первом столбце это значение погрешности датчи-
ка-источника расстояний, далее до конца строки значения ошибок для
каждого испытанного случая. При этом надо иметь в виду, что могут
возникать ситуации, когда количество значений ошибки меньше, чем
_PTRC_TS_NUM_OF_CASES_FOR_ONE_INCREMENT, так как не все точки могут
быть восстановлены (см. замечание на стр. 6).

Значения количеств шагов представлены в виде:

Sensor_uncertainty Raw_Solves
0.0000000 2566 2885 710 ...
0.0100000 866 546 994 ...
0.0200000 997 935 570 ...
0.0300000 1231 2668 463 ...
... ... ... ...

Здесь число в первом столбце это значение погрешности датчи-
ка-источника расстояний, далее до конца строки значения количеств пред-
принятых шагов для каждого испытанного случая. При этом надо иметь в
виду, что при малых значениях 𝑤 (см. разд. 2.3.3 (10) и замечание к разде-
лу 3.2.2) большинство значений не будет превышать (𝑤𝑚) + const.

Исходя их этих данных можно строить иные показатели качества ал-
горитма, например, композитный показатель отношения точности к коли-
честву шагов или иные согласно предполагаемым условиям эксплуатации
алгоритма.
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3.4.3. Визуализация одного частного случая

Визуализация частного случая работы алгоритма реализована в сле-
дующих файлах:

iterative_point_recovery/
…
visualisation/

Scilab/
…
ptrc_one_sample_vis-2d-anim.sce..................................

сценарий Scilab для анимированной визуализации двухмер-
ного случая работы алгоритма.

ptrc_one_sample_vis-2d.sce........................................
сценарий Scilab для визуализации двухмерного случая рабо-
ты алгоритма.

ptrc_one_sample_vis-3d.sce........................................
сценарий Scilab для визуализации трёхмерного случая рабо-
ты алгоритма.

sample_data_parser.sce.............................................
сценарий Scilab для чтения и разбора данных частного слу-
чая, сформированных проверочным комплектом.

…
Wolfram_Mathematica/

…
ptrc_one_sample_vis-2d-anim.wls..................................

сценарий Wolfram Mathematica для анимированной визуа-
лизации двухмерного случая оценки алгоритма.

ptrc_one_sample_vis-2d.wls........................................
сценарий Wolfram Mathematica для визуализации двухмер-
ного случая оценки алгоритма.

ptrc_one_sample_vis-3d.wls........................................
сценарий Wolfram Mathematica для визуализации трёхмер-
ного случая оценки алгоритма.

sample_data_parser.wl..............................................
сценарий Wolfram Mathematica для чтения и разбора дан-
ных частного случая, сформированных проверочным ком-
плектом.

…
one_case_data-2d_#.txt......................демонстрационные данные.
one_case_data-3d_#.txt......................демонстрационные данные.

…
Визуализация регресс-оценки реализована для пакетов Scilab и
Wolfram Mathematica, описание приводится для пакета Scilab, однако
всё написанное справедливо и для сценария Wolfram Mathematica, за
исключением прямо оговорённых отличий.
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Визуализация одного частного случая не имеет значительной прак-
тической пользы и сделана в разъяснительных целях для понимания ал-
горитма лицами, склонными к пространственно-геометрическому мышле-
нию больше, нежели к синтаксическому. Учитывая, что человек способен
достаточно полно воспринимать только двухмерное пространство, визу-
ализация частного случая сделана только для двухмерного и ограниченно
для трёхмерного случая. Теоретически можно сделать визуализации случа-
ев и больших размерностей, разбивая их на проекции, но так как в целом
практической пользы от такой визуализации нет или крайне мало, для слу-
чаев с размерностью выше трёх сценарии визуализации не создавались.
Визуализация двухмерного частного случая работы алгоритма. Реко-
мендуемые настройки проверочного комплекта для визуализации одного
двухмерного частного случая работы алгоритма:

#define _PTRC_TS_DIMENSIONALITY 2ul
#define _PTRC_TS_NUM_OF_SPHERES по условиям испытаний
#define _PTRC_TS_NUM_OF_RUNS 3ul
#define _PTRC_TS_RANGE_MULTIPLIER 1.0f
#define _PTRC_TS_MIN_SENSOR_UNCERTAINTY по условиям испытаний
#define _PTRC_TS_MAX_SENSOR_UNCERTAINTY равно предыдущему значению
#define _PTRC_TS_SENSOR_UNCERTAINTY_INCREMENT 0.01f
#define _PTRC_TS_NUM_OF_CASES_FOR_ONE_INCREMENT 1ul
#define _PTRC_MAX_ITERATIONS_ON_SPHERE 100ul
#define _PTRC_TS_STATISTICS_FILENAME ”stat_report.txt”
#define _PTRC_TS_STATISTICS_DISCRETISATION_STEP 0.001f
#define _PTRC_TS_FLOAT_OUTFORM ”%.7f”
#define _PTRC_TS_DATA_OUTPUT_MODE
//#define _PTRC_TS_VERBOSE_MODE

После установки настроек проверочного комплекта, необходимо осуще-
ствить его сборку в порядке указанном в разделе 3.4.1. Затем из выполните
сценарий Scilab командой:

scilab -f ptrc_one_sample_vis-2d.sce
либо сценарийWolframMathematica командой:

Mathematica -f ptrc_one_sample_vis-2d.wls
После выполнения сценария останется открытая оболочка и графические
окна с визуализацией.Вданномслучае открытыеоболочкиостаются специ-
ально, чтобы можно было в интерактивных графических окнах масштаби-
ровать изображение, так как часть визуализации достаточно мала и нераз-
борчива на общем плане. В сценарии первые строки представляют собой
присвоение значений двум переменным

fileName=”one_case_data-2d.txt”;
generateNewCase=1;
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Первая их них fileName определяет путь к и имя файла, куда будут сохра-
нены результаты запуска проверочного комплекта, выведенные в стандарт-
ный вывод; вторая generateNewCase – указывает сценарию производить
ли новый запуск проверочного комплекта (значение 1) или работать с фай-
лом fileName без его изменения (значение 0).

Для начала рассмотрим случай, когда начальные условия доста-
точно корректны. Так на рис. 4 показан случай, когда в результа-
те ошибок датчиков-источников расстояний образуется закрытая об-
ласть. Визуализация строится на фоне тепловой карты значений функ-
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Рис. 4: Визуализация работы алгоритма в случае закрытой области.

ции 𝜆 (разд. 2.3.2 (9)). Известные окружности и их центры (расположение
датчиков-источников расстояний) обозначены оттенками цветов (в дан-
ном случае тёмно-красным, тёмно-зелёным и тёмно-синим). Символом⨂
обозначается начальное приближение. Чёрные линии показывают переход
от приближения к приближению в ходе выполнения алгоритма. Послед-
нее приближение для данного начального обведено чёрной окружностью.
Фиолетовым символом + обозначается наилучшее приближение выбран-
ное среди всех результатов работы из разных начальных приближений.Фи-
олетовым символом ∗ обозначается«настоящая» искомая точка.На рис. 4
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изображение (a) показывает «путь» улучшения приближений для перво-
го начального приближения и последующие два изображения (b) и (c) для
2-ого и 3-его соответственно. Последнее изображение (d) это увеличен-
ный фрагмент первого изображения, где продемонстрирована замкнутая
область, образованная окружностями построенными из неточных рассто-
яний. Можно видеть, как на четвёртом изображении алгоритм попадает в
замкнутую область и завершается. В результате, как написано в заголовках
изображений, расстояние от найденного приближения до искомой точки
составляет 0.0048018.

Аналогично на рис. 5 продемонстрирован случай, когда по расстоя-
ниям с ошибками построены сферы образующие незамкнутую (открытую
область), где алгоритмнаходит наилучшее приближение. Завершение рабо-
ты алгоритма можно видеть на рис. 5 изображение (d).
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Рис. 5: Визуализация работы алгоритма в случае открытой области.

Можно и далее приводить различные случаи и классифицировать их,
включая случаи, когда есть полузакрытая область или случаи, когда окруж-
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ности не пересекаются, но в целом в большинстве таких случаев алгоритм
ведёт себя правильно и даёт хорошее приближение. Интереснее рассмот-
реть случаи, когда условия выполнения алгоритма действительно плохие и
на тепловой карте явно образованы 2 (иногда больше) экстремумов функ-
ции 𝜆, что, как было сказано выше, происходит, если датчики-источники
расстояний расположены на одной или близко к одной гиперплоскости.
На таких случаях становятся видны преимущества нескольких запусков ал-
горитма из разных начальных приближений. Так на рис. 6 можно видеть,
что датчики-источники расстояний (центры сфер) расположены почти на
одной гиперплоскости (прямой для двухмерного случая), что приводит к
появлению двух примерно равных экстремумов на севере и юго-востоке
изображения, причём искомая точка расположена на юго-востоке. Можно
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Рис. 6: Визуализация работы алгоритма в случае двух экстремумов функ-
ции 𝜆 и нахождении «хорошего» приближения.

видеть, что на изображении (a) рис. 6 из первого начального приближения
алгоритм приходит в область между двумя экстремумами и в отсутствии
улучшенияфункции 𝜆 (разд. 2.3.2 (9)) прекращает поиск, возвращаяплохое
приближение.Но при проверке второго начального приближения на изоб-
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ражении (b) рис. 6, алгоритм приходит в «правильный» экстремум функ-
ции 𝜆 и возвращает «хорошее» приближение искомой точки, завершение
чего можно видеть на масштабированном изображении (d) рис. 6. И при
проверке третьего начального приближения алгоритм уходит к «непра-
вильному» северному экстремуму функции 𝜆, где и завершается. И только
выбор из этих трёх финальных приближений позволяет выбрать наилуч-
шее, соответствующее изображению (b).

В отдельных случаях, когда датчики-источники расстояний располо-
женына однойилиблизко к одной гиперплоскостиможет образоваться об-
ласть, в которой значениефункции 𝜆 выше, чем вобласти сискомой точкой.
В таком случае алгоритм вернёт очень «плохое» приближение. Подобный
пример приведён на рис. 7. Интересным в приведённом примере является
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Рис. 7: Визуализация работы алгоритма в случае двух экстремумов функ-
ции 𝜆 и нахождении ошибочного приближения.

то, что при исполнении алгоритма от третьего начального приближения на
изображении (c) видно как алгоритм пришёл в область близкую к искомой
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точке, но после сравнения качества финальных первого и третьего прибли-
жений было выбрано первое, то есть значение функции 𝜆 оказалось выше в
экстремуме противоположном области с искомой точкой. Как можно по-
пытаться избегать подобных ситуаций, будет описано в разделе 4.
Анимированная визуализация двухмерного частного случая работы ал-
горитма. Анимированная визуализация двухмерного частного случая
осуществляется с теми же настройками, что и статическая визуализация,
описанная в предыдущем параграфе. Сценарий анимированной визуали-
зации использует сценарий статической визуализации, поэтому настрой-
ки переменных fileName и generateNewCase необходимо менять в соот-
ветствующих файлах ptrc_one_sample_vis-2d.sce или .wls. Имя файла
с анимацией определено в сценарии ptrc_one_sample_vis-2d-anim.sce
для Scilab или .wls дляWolframMathematica переменной

animationFileName=”animation.gif”;

Сценарий Scilab, создающий анимированный gif-файл, запускается коман-
дой:

scilab -f ptrc_one_sample_vis-2d-anim.sce -quit
а сценарийWolframMathematica командой:

Mathematica ptrc_one_sample_vis-2d-anim.wls
В результате выполнения данной команды в каталоге появится файл
animation.gif, где и будет анимированная визуализация одного двухмер-
ного случая.

Сценарий Scilab формирует gif-файл с помощью пакета
ImageMagic (https://imagemagick.org), который должен быть уста-
новлен и доступен.

Сценарий Wolfram Mathematica формирует gif-файл собственными
средствами, но есть нюанс: так как формирование gif-файла производится
модулем на Java, при большом количестве кадров сценарий может исполь-
зовать очень много оперативной памяти вплоть до 200 гигабайт. В связи с
изложенным рекомендуется запускать сценарий с ограничением по опера-
тивной памяти, например, в ОС Linux это можно сделать с помощью кон-
трольных групп командами:

sudo cgcreate -t user:user -a user:user -g memory:mem2G
echo 2048M > /sys/fs/cgroup/memory/mem2G/memory.limit_in_bytes

А затем запустить сценарий при данных ограничениях:

cgexec -g memory:mem2G Mathematica ptrc_one_sample_vis-2d-anim.wls
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Визуализация трёхмерного частного случая работы алгоритма. Реко-
мендуемые настройки проверочного комплекта для визуализации одного
трёхмерного частного случая работы алгоритма:

#define _PTRC_TS_DIMENSIONALITY 3ul
#define _PTRC_TS_NUM_OF_SPHERES по условиям испытаний
#define _PTRC_TS_NUM_OF_RUNS 3ul
#define _PTRC_TS_RANGE_MULTIPLIER 1.0f
#define _PTRC_TS_MIN_SENSOR_UNCERTAINTY по условиям испытаний
#define _PTRC_TS_MAX_SENSOR_UNCERTAINTY равно предыдущему значению
#define _PTRC_TS_SENSOR_UNCERTAINTY_INCREMENT 0.01f
#define _PTRC_TS_NUM_OF_CASES_FOR_ONE_INCREMENT 1ul
#define _PTRC_MAX_ITERATIONS_ON_SPHERE 100ul
#define _PTRC_TS_STATISTICS_FILENAME ”stat_report.txt”
#define _PTRC_TS_STATISTICS_DISCRETISATION_STEP 0.001f
#define _PTRC_TS_FLOAT_OUTFORM ”%.7f”
#define _PTRC_TS_DATA_OUTPUT_MODE
//#define _PTRC_TS_VERBOSE_MODE

После установки настроек проверочного комплекта, необходимо осуще-
ствить его сборку в порядке указанном в разделе 3.4.1. Затем из выполните
сценарий Scilab командой:

scilab -f ptrc_one_sample_vis-3d.sce
либо сценарийWolframMathematica командой:

Mathematica -f ptrc_one_sample_vis-3d.wls
После выполнения сценария останется открытая оболочка и графические
окна с визуализацией.Вданномслучае открытыеоболочкиостаются специ-
ально, чтобы можно было в интерактивных графических окнах масштаби-
ровать изображение, так как часть визуализации достаточно мала и нераз-
борчива на общем плане. В сценарии первые строки представляют собой
присвоение значений двум переменным

fileName=”one_case_data-3d.txt”;
generateNewCase=1;

Первая их них fileName определяет путь к и имя файла, куда будут сохра-
нены результаты запуска проверочного комплекта, выведенные в стандарт-
ный вывод; вторая generateNewCase – указывает сценарию производить
ли новый запуск проверочного комплекта (значение 1) или работать с фай-
лом fileName без его изменения (значение 0).

Для визуализации трёхмерного случая тепловая карта функции 𝜆 не
строится. Вцеломвизуализация трёхмерного случая весьманеинформатив-
на и после построения требуется посмотреть с нескольких точек обзора,
чтобы понять, как происходило улучшение приближений. В сценарии ви-
зуализации для Scilab сферы отображаются с помощью сетки, частоту ко-
торой регулирует переменная meshSize, а в сценарии визуализации для
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WolframMathematica поверхности сфер отображаются полностью, но вве-
дён регулятор прозрачности поверхности сфер.

Сложность восприятия визуализации трёхмерного случая можно по-
нять из рис. 8.
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Рис. 8: Визуализация работы алгоритма в трёхмерном случае.
(a), (b) – Scilab. (c), (d) –WolframMathematica.
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3.5. Исходный код документации и сопутствующие файлы
Данная документация предоставляется в виде исходных кодов в сле-

дующих файлах:
iterative_point_recovery/

…
documentation/

fonts/.........каталог, содержащий шрифты и их настройки.
images/........каталог, содержащий иллюстрации документации и исход-

ные файлы для построения иллюстраций.
build_script..сценарий сборки документации.
ipr_doc.cls...файл с определениями стиля документации.
iterative_point_recovery_documentation-russian.tex................

исходный код документации.
…

Документация собирается отдельно. Для её сборки необходима
система вёрстки X ETEX/X ELATEX или иная TEX/LATEX-система. Система
X ETEX и сопутствующие пакеты поставляются в составе дистрибутива
TEX Live (https://www.tug.org/texlive/). Использование системы от-
личной от X ETEX может потребовать внесения изменений в исходный код
документации.

Сама сборка документации осуществляется из каталога
iterative_point_recovery/documentation запуском сценария сборки

./build_script
Если в ходе исполнения данного сценария не возникло ошибок, то в ката-
логе iterative_point_recovery/documentation/build появится файл

iterative_point_recovery_documentation-russian.pdf
с документацией.

При сборке будут использованы шрифты семейства IBM Plex, но
можно вернуться к базовому семейству Computer Modern просто раском-
ментировав строку

\input{fonts/font_settings-Computer_Modern.tex}

в преамбуле исходного кода документации.

4. Основные направления возможных доработок
При реализации алгоритма для конкретных условий работы преж-

де всего необходима ревизия предположений из раздела 2.3, так как при-
ведённые предположения могут не соответствовать известным условиям
работы алгоритма и требовать пересмотра. В настоящее время они сфор-
мулированы достаточно общо, что оставляет маневр для уточнения в кон-
кретных реализациях. При изменении подходов, описанных в разделе 2.3,
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рекомендуется проводить регресс-оценку на случайном или специфичном
задачам проверочном множестве.

Для избегания ситуаций неправильного выбора приближения в слу-
чаях когда, экстремум функции 𝜆 (разд. 2.3.2 (9)) находится на удалении
от искомой точки, а возможности удовлетворительного выбора датчи-
ков-источников расстояний нет, рассматривается возможность сохране-
ния и выбора из нескольких приближений, исходя из дополнительной ин-
формации, например, о предыдущем положении искомой точки.
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